13,103 research outputs found

    Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions

    Get PDF
    In the last decade, the relativistic magnetohydrodynamic (MHD) modelling of pulsar wind nebulae, and of the Crab nebula in particular, has been highly successful, with many of the observed dynamical and emission properties reproduced down to the finest detail. Here, we critically discuss the results of some of the most recent studies: namely the investigation of the origin of the radio emitting particles and the quest for the acceleration sites of particles of different energies along the termination shock, by using wisps motion as a diagnostic tool; the study of the magnetic dissipation process in high magnetization nebulae by means of new long-term three-dimensional simulations of the pulsar wind nebula evolution; the investigation of the relativistic tearing instability in thinning current sheets, leading to fast reconnection events that might be at the origin of the Crab nebula gamma-ray flares.Comment: 30 pages, 12 figure

    Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Get PDF
    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ~10^46 erg are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ~10^15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3-D MHD simulations of relativistic pulsar winds and their associated nebulae.Comment: EPS 44th Conference on Plasma Physics (June 2017, Belfast), paper accepted for publication on Plasma Physics and Controlled Fusio

    SrPt3_3P: two-band single-gap superconductor

    Full text link
    The magnetic penetration depth (λ\lambda) as a function of applied magnetic field and temperature in SrPt3_3P(Tc8.4T_c\simeq8.4 K) was studied by means of muon-spin rotation (μ\muSR). The dependence of λ2\lambda^{-2} on temperature suggests the existence of a single ss-wave energy gap with the zero-temperature value Δ=1.58(2)\Delta=1.58(2) meV. At the same time λ\lambda was found to be strongly field dependent which is the characteristic feature of the nodal gap and/or multi-gap systems. The multi-gap nature of the superconduicting state is further confirmed by observation of an upward curvature of the upper critical field. This apparent contradiction would be resolved with SrPt3_3P being a two-band superconductor with equal gaps but different coherence lengths within the two Fermi surface sheets.Comment: 6 pages, 4 figure

    Macroscopic and Local Magnetic Moments in Si-doped CuGeO3_3 with Neutron and μ\muSR Studies

    Full text link
    The temperature-concentration phase diagram of the Si-doped spin-Peierls compound CuGeO3_{3} is investigated by means of neutron scattering and muon spin rotation spectroscopy in order to determine the microscopic distribution of the magnetic and lattice dimerised regions as a function of doping. The analysis of the zero-field muon spectra has confirmed the spatial inhomogeneity of the staggered magnetisation that characterises the antiferromagnetic superlattice peaks observed with neutrons. In addition, the variation of the macroscopic order parameter with doping can be understood by considering the evolution of the local magnetic moment as well as of the various regions contributing to the muon signal

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter

    Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature

    Full text link
    Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a axis, thus preserving the overall helical structure.Comment: 10 pages, 4 figure

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (μ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of μ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS

    Changes in chlamydia control activities in Europe between 2007 and 2012: a cross-national survey

    Get PDF
    BACKGROUND: In 2012, the levels of chlamydia control activities including primary prevention, effective case management with partner management and surveillance were assessed in 2012 across countries in the European Union and European Economic Area (EU/EEA), on initiative of the European Centre for Disease Control (ECDC) survey, and the findings were compared with those from a similar survey in 2007. METHODS: Experts in the 30 EU/EEA countries were invited to respond to an online questionnaire; 28 countries responded, of which 25 participated in both the 2007 and 2012 surveys. Analyses focused on 13 indicators of chlamydia prevention and control activities; countries were assigned to one of five categories of chlamydia control. RESULTS: In 2012, more countries than in 2007 reported availability of national chlamydia case management guidelines (80% vs. 68%), opportunistic chlamydia testing (68% vs. 44%) and consistent use of nucleic acid amplification tests (64% vs. 36%). The number of countries reporting having a national sexually transmitted infection control strategy or a surveillance system for chlamydia did not change notably. In 2012, most countries (18/25, 72%) had implemented primary prevention activities and case management guidelines addressing partner management, compared with 44% (11/25) of countries in 2007. CONCLUSION: Overall, chlamydia control activities in EU/EEA countries strengthened between 2007 and 2012. Several countries still need to develop essential chlamydia control activities, whereas others may strengthen implementation and monitoring of existing activities
    corecore