13,103 research outputs found
Selected articles from the XXV National Congress of the Italian Society of Geriatric Surgery.
Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions
In the last decade, the relativistic magnetohydrodynamic (MHD) modelling of
pulsar wind nebulae, and of the Crab nebula in particular, has been highly
successful, with many of the observed dynamical and emission properties
reproduced down to the finest detail. Here, we critically discuss the results
of some of the most recent studies: namely the investigation of the origin of
the radio emitting particles and the quest for the acceleration sites of
particles of different energies along the termination shock, by using wisps
motion as a diagnostic tool; the study of the magnetic dissipation process in
high magnetization nebulae by means of new long-term three-dimensional
simulations of the pulsar wind nebula evolution; the investigation of the
relativistic tearing instability in thinning current sheets, leading to fast
reconnection events that might be at the origin of the Crab nebula gamma-ray
flares.Comment: 30 pages, 12 figure
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
Neutron stars are among the most fascinating astrophysical sources, being
characterized by strong gravity, densities about the nuclear one or even above,
and huge magnetic fields. Their observational signatures can be extremely
diverse across the electromagnetic spectrum, ranging from the periodic and
low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray
flares of magnetars, where energies of ~10^46 erg are released in a few
seconds. Fast-rotating and highly magnetized neutron stars are expected to
launch powerful relativistic winds, whose interaction with the supernova
remnants gives rise to the non-thermal emission of pulsar wind nebulae, which
are known cosmic accelerators of electrons and positrons up to PeV energies. In
the extreme cases of proto-magnetars (magnetic fields of ~10^15 G and
millisecond periods), a similar mechanism is likely to provide a viable engine
for the still mysterious gamma-ray bursts. The key ingredient in all these
spectacular manifestations of neutron stars is the presence of strong magnetic
fields in their constituent plasma. Here we will present recent updates of a
couple of state-of-the-art numerical investigations by the high-energy
astrophysics group in Arcetri: a comprehensive modeling of the steady-state
axisymmetric structure of rotating magnetized neutron stars in general
relativity, and dynamical 3-D MHD simulations of relativistic pulsar winds and
their associated nebulae.Comment: EPS 44th Conference on Plasma Physics (June 2017, Belfast), paper
accepted for publication on Plasma Physics and Controlled Fusio
SrPtP: two-band single-gap superconductor
The magnetic penetration depth () as a function of applied magnetic
field and temperature in SrPtP( K) was studied by means of
muon-spin rotation (SR). The dependence of on temperature
suggests the existence of a single wave energy gap with the
zero-temperature value meV. At the same time was
found to be strongly field dependent which is the characteristic feature of the
nodal gap and/or multi-gap systems. The multi-gap nature of the
superconduicting state is further confirmed by observation of an upward
curvature of the upper critical field. This apparent contradiction would be
resolved with SrPtP being a two-band superconductor with equal gaps but
different coherence lengths within the two Fermi surface sheets.Comment: 6 pages, 4 figure
Macroscopic and Local Magnetic Moments in Si-doped CuGeO with Neutron and SR Studies
The temperature-concentration phase diagram of the Si-doped spin-Peierls
compound CuGeO is investigated by means of neutron scattering and muon
spin rotation spectroscopy in order to determine the microscopic distribution
of the magnetic and lattice dimerised regions as a function of doping. The
analysis of the zero-field muon spectra has confirmed the spatial inhomogeneity
of the staggered magnetisation that characterises the antiferromagnetic
superlattice peaks observed with neutrons. In addition, the variation of the
macroscopic order parameter with doping can be understood by considering the
evolution of the local magnetic moment as well as of the various regions
contributing to the muon signal
A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20
The brightest giant flare from the soft -ray repeater (SGR) 1806-20
was detected on 2004 December 27. The isotropic-equivalent energy release of
this burst is at least one order of magnitude more energetic than those of the
two other SGR giant flares. Starting from about one week after the burst, a
very bright ( mJy), fading radio afterglow was detected. Follow-up
observations revealed the multi-frequency light curves of the afterglow and the
temporal evolution of the source size. Here we show that these observations can
be understood in a two-component explosion model. In this model, one component
is a relativistic collimated outflow responsible for the initial giant flare
and the early afterglow, and another component is a subrelativistic wider
outflow responsible for the late afterglow. We also discuss triggering
mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for
publication in ApJ Letter
Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature
Below a temperature of approximately 29 K the manganese magnetic moments of
the cubic binary compound MnSi order to a long-range incommensurate helical
magnetic structure. Here, we quantitatively analyze a high-statistic zero-field
muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi
by exploiting the result of representation theory as applied to the
determination of magnetic structures. Instead of a gradual rotation of the
magnetic moments when moving along a axis, we find that the angle of
rotation between the moments of certain subsequent planes is essentially
quenched. It is the magnetization of pairs of planes which rotates when moving
along a axis, thus preserving the overall helical structure.Comment: 10 pages, 4 figure
Evidence for spin liquid ground state in SrDyO frustrated magnet probed by muSR
Muon spin relaxation (SR) measurements were carried out on
SrDyO, a frustrated magnet featuring short range magnetic correlations
at low temperatures. Zero-field muon spin depolarization measurements
demonstrate that fast magnetic fluctuations are present from K down to
20 mK. The coexistence of short range magnetic correlations and fluctuations at
mK indicates that SrDyO features a spin liquid ground state.
Large longitudinal fields affect weakly the muon spin depolarization, also
suggesting the presence of fast fluctuations. For a longitudinal field of
T, a non-relaxing asymmetry contribution appears below K,
indicating considerable slowing down of the magnetic fluctuations as
field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in
Journal of Physics: Conference Series (JPCS
Changes in chlamydia control activities in Europe between 2007 and 2012: a cross-national survey
BACKGROUND: In 2012, the levels of chlamydia control activities including primary prevention, effective case management with partner management and surveillance were assessed in 2012 across countries in the European Union and European Economic Area (EU/EEA), on initiative of the European Centre for Disease Control (ECDC) survey, and the findings were compared with those from a similar survey in 2007. METHODS: Experts in the 30 EU/EEA countries were invited to respond to an online questionnaire; 28 countries responded, of which 25 participated in both the 2007 and 2012 surveys. Analyses focused on 13 indicators of chlamydia prevention and control activities; countries were assigned to one of five categories of chlamydia control. RESULTS: In 2012, more countries than in 2007 reported availability of national chlamydia case management guidelines (80% vs. 68%), opportunistic chlamydia testing (68% vs. 44%) and consistent use of nucleic acid amplification tests (64% vs. 36%). The number of countries reporting having a national sexually transmitted infection control strategy or a surveillance system for chlamydia did not change notably. In 2012, most countries (18/25, 72%) had implemented primary prevention activities and case management guidelines addressing partner management, compared with 44% (11/25) of countries in 2007. CONCLUSION: Overall, chlamydia control activities in EU/EEA countries strengthened between 2007 and 2012. Several countries still need to develop essential chlamydia control activities, whereas others may strengthen implementation and monitoring of existing activities
- …
