66 research outputs found
The Role of Extramembranous Cytoplasmic Termini in Assembly and Stability of the Tetrameric K+-Channel KcsA
Membrane-active alcohol 2,2,2-trifluoroethanol has been proven to be an attractive tool in the investigation of the intrinsic stability of integral membrane protein complexes by taking K+-channel KcsA as a suitable and representative ion channel. In the present study, the roles of both cytoplasmic N and C termini in channel assembly and stability of KcsA were determined. The N terminus (1–18 residues) slightly increased tetramer stability via electrostatic interactions in the presence of 30 mol.% acidic phosphatidylglycerol (PG) in phosphatidylcholine lipid bilayer. Furthermore, the N terminus was found to be potentially required for efficient channel (re)assembly. In contrast, truncation of the C terminus (125–160 residues) greatly facilitated channel reversibility from either a partially or a completely unfolded state, and this domain was substantially involved in stabilizing the tetramer in either the presence or absence of PG in lipid bilayer. These studies provide new insights into how extramembranous parts play their crucial roles in the assembly and stability of integral membrane protein complexes
MscS-like mechanosensitive channels in plants and microbes
The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, consists of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, determining the crystal structure of E. coli MscS and several homologues in several conformational states has contributed to our understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologues from all three domains of life and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity
Hypothalamic 2-Arachidonoylglycerol Regulates Multistage Process of High-Fat Diet Preferences
In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system.The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting.Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption.High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences
Oligodendrocyte Development in the Absence of Their Target Axons In Vivo
Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp) mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons. Together, our data illustrate the power of zebrafish for studying the entire life-course of the oligodendrocyte lineage in vivo in an altered axonal environment
Hydration properties of mechanosensitive channel pores define the energetics of gating
Conformationally stable peptide macrocycles assembled using the Petasis borono-Mannich reaction
Synthesis and the structural analysis of conformationally stable peptide macrocycles assembled using the Petasis borono-Mannich reaction are reported.</p
Inhibition stabilization is a widespread property of cortical networks
AbstractMany cortical network models use recurrent coupling strong enough to require inhibition for stabilization. Yet it has been experimentally unclear whether inhibition-stabilized network (ISN) models describe cortical function well across areas and states. Here we test several ISN predictions, including the counterintuitive (paradoxical) suppression of inhibitory firing in response to optogenetic inhibitory stimulation. We find clear evidence for ISN operation in mouse visual, somatosensory, and motor cortex. Simple two-population ISN models describe the data well and let us quantify coupling strength. Though some models predict a non-ISN to ISN transition with increasingly strong sensory stimuli, we find ISN effects without sensory stimulation and even during light anesthesia. Additionally, average paradoxical effects result only with transgenic, not viral, opsin expression in parvalbumin (PV)-positive neurons; theory and expression data show this is consistent with ISN operation. Taken together, these results show strong coupling and inhibition stabilization are common features of cortex.</jats:p
Drosophila TRPA1 Channel Is Required to Avoid the Naturally Occurring Insect Repellent Citronellal
SummaryPlants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca2+-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca2+-activated K+ channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria
Long-term treatment of patients with a history of ulcerative colitis who develop gastritis and pan-enteritis after colectomy
Item does not contain fulltextBACKGROUND: Ulcerative colitis (UC) is generally described as a superficial diffuse inflammation restricted to the colon and rectum. However, several case reports have described a distinct and rare type of UC-related pan-enteritis, typically occurring after colectomy. Corticosteroids are effective for induction of remission of this condition, but it is not clear how these patients should be managed long term. GOALS: To further describe and define the entity of UC-related pan-enteritis and to investigate the efficacy of azathioprine for maintenance of remission. RESULTS: We describe 5 patients with superficial diffuse ulcerative inflammation of the stomach, small bowel, and pouch if present. Four of the 5 patients developed enteritis after colectomy for ulcerative pancolitis. Pathology showed severe mucosal inflammation with infiltration of neutrophils and plasma cells from the stomach to the ileum. Video capsule endoscopy in 1 patient confirmed the presence of mucosal inflammation throughout the small bowel. All patients were started on a standardized treatment with intravenous corticosteroids for induction of remission and azathioprine for maintenance therapy. The conditions of all the patients rapidly improved, and subsequently, 4 patients were in full remission on azathioprine monotherapy, despite failure of this UC therapy before surgery, whereas 1 patient continues to have a steroid-dependent disease. CONCLUSIONS: The outcomes of 5 cases of UC-related pan-enteritis as described in this report support a role for azathioprine in remission maintenance. Future research is needed to improve our understanding of this rare but distinct intestinal inflammatory disorder
- …
