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ABBREVIATIONS 

MS, mechanosensitive  
MscS, mechanosensitive channel of small conductance 
MscL, mechanosensitive channel of large conductance 
MscM, mechanosensitive channel of mini conductance 
MscMJ, mechanosensitive channel of Methanococcus jannaschii, 
MscMJLR, mechanosensitive channel of Methanococcus jannaschii of large conductance and rectifying 
MSL, MscS-Like 
Msy, MscS from yeast 
MscCG, mechanosensitive channel of Corynebacterium glutamicum 
MscSP, mechanosensitive channels of Silicibacter pylori 
TM, transmembrane  
KcsA, potassium crystallographically-sited activation channel 
pS, picosiemen 
nS, nanosiemen 
pA, picoampere 
PCl-, preference for Cl- ions 
MSC, mechanosensitive channel 
EPR, electron paramagnetic resonance 
MD, molecular dynamics 
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ABSTRACT 

The challenge of osmotic stress is something all living organisms must face as a result of 

environmental dynamics.  Over the past three decades, innovative research and cooperation across 

disciplines has irrefutably established that cells utilize mechanically gated ion channels to release 

osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the 

inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. 

The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive 

channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families 

of mechanosensitive channels. The latter of these two families, the MscS family, is made up of members 

from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family 

members has provided insight into how organisms use mechanosensitive channels for osmotic regulation 

in response to changing environmental and developmental circumstances. Furthermore, solving the 

crystal structure of E. coli MscS and several homologs in several conformational states has contributed to 

the understanding of the gating mechanisms of these channels. Here we summarize our current 

knowledge of MscS homologs from all three domains of life, and address their structure, proposed 

physiological functions, electrophysiological behaviors, and topological diversity.   
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 4

INTRODUCTION 

I. Ion Channels 

Ion channels are membrane-spanning protein complexes that form a gated macromolecular pore. An 

open channel can facilitate the passive diffusion of tens of millions of ions per second from one side of 

the membrane to the other, down their electrochemical gradient 1, 2. The role played by ions in the 

excitable membranes of muscle and nerve cells has been studied for over a hundred years 3 and the 

importance of ion channels as mediators of the nervous system and their role in human disease is now 

well established (several recent reviews include 4-6). However, plant and microbial ion channels have also 

been important subjects of study 7, 8. It is often forgotten that single-cell action potentials were first 

described in the giant cells of characean algae and that during the 1930s, the excitation of squid axons and 

algal membranes was studied side-by-side (reviewed in 9-11. The bacterial potassium crystallographically-

sited activation channel (KcsA) was the first ion channel to be characterized by X-ray crystallography 12, 

and it is now understood that bacteria have a wide array of ion-specific, mechanosensitive, and water 

channels 13. Investigations into plant and microbial ion channels not only inform our understanding of 

basic cellular physiology, but may also be instrumental in engineering defenses against microbial 

pathogens and in crop improvement 14, 15. 

Ion channels can be classified according to homology-based family groupings or behavioral 

characteristics such as ion selectivity or gating stimulus (in addition to other more subtle behaviors such 

as conductance, adaptation and opening or closing kinetics). Many channels are specific to the ion or 

small molecule that they allow to pass (KcsA has a 1000-fold preference for K+ over Na+ ions 16), while 

others are not (the bacterial mechanosensitive ion channel of large conductance (MscL) has no ionic 

preference at all 17). Channel conductance, the ease with which current passes from once face of the 

channel pore to the other, can range over several orders of magnitude in different channel types and 

organisms. For example, the aforementioned MscL has one of the largest conductances measured, up to 3 
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 5

nS 17, while the small potassium (SK) channels associated with Parkinson’s disease have a conductance of 

only 10 pS 18. The burst of ion flux that results from the rapid opening of an ion channel (occurring on the 

order of milliseconds) can have several downstream effects: a change in membrane potential, which can 

serve as a signal itself by exciting other channels; a burst of intracellular Ca2+; or the normalization of ion 

concentrations across a membrane to control cell volume. Ion channels open (or “gate”) only under 

certain conditions, such as altered transmembrane voltage, binding of a small ligand, or mechanical force. 

It is one family of channels that respond to the latter stimulus, called mechanosensitive (MS) channels, 

which we consider in this review.  

II. Mechanosensitive Ion Channels 

A. Gating Models 

How force administered to a cell is delivered to a mechanosensitive channel, and how the channel 

subsequently converts that force into ion flux are important questions requiring the purposeful integration 

of genetic, biochemical, structural, and biophysical approaches. Three simplified models have been 

proposed for the gating of channels that act directly as mechanoreceptors (that is, there is not an 

intermediary between the force perception and the channel) 19-21. These models are described below and 

illustrated in Figure 1. 

Intrinsic. In the intrinsic bilayer model (Fig. 1A), force is conveyed to the channel directly through 

the planar membrane in which it is embedded, and lipid-protein interactions are the primary determinants 

of the favored state. Biophysical modeling approaches have indicated that the closed state of the channel 

is favored under low membrane tensions due to the cost of membrane deformation at the perimeter of the 

channel. A channel can deform the surrounding membrane due to mismatch between the thickness of the 

membrane and the thickness of the hydrophobic domain of the channel. In addition, the membrane (which 

has a lower compressibility modulus than the channel 22) can be locally distorted or bent as it conforms to 

the shape, or profile, of the embedded channel 20, 23, 24. The energy cost associated with these membrane 
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 6

deformations increases upon channel opening, as the cross-sectional area—and therefore the perimeter—

of the channel expands. However, loading the membrane with tension through a patch pipette or osmotic 

pressure can offset this energy cost; under these conditions the open state is favored. Importantly, 

membranes are active participants in the gating of MS channels and the pressure exerted by the lipid on 

the channel is a critical component of the intrinsic bilayer model 25. This model is supported by 

experimental evidence showing that the fluidity, thickness and curvature of the membrane influence the 

gating characteristics of MS channels 26-28. 

Tethered. It has long been speculated that mechanotransduction by hair cells of the vertebrate inner 

ear is mediated by the action of tethers (called “tip links”) on transducer channels located in the hair cell 

plasma membrane (reviewed in 29). In the tethered trapdoor model (Fig. 1B), force is conveyed to the 

channel through tension applied to other cellular components, such as the actin or microtubule 

cytoskeleton and/or the extracellular matrix. Displacement of the cellular component pulls on the channel 

through the tether, thereby triggering its opening. Alternatively, it has been proposed that rather than 

opening a trapdoor, pulling a tether leads to reorientation of the channel within the lipid bilayer, which 

results in channel gating in response to the membrane deformation and tension forces described above 

(Fig. 1C) 21, 30, 31. In this “unified” model, as with the intrinsic bilayer model, the biophysical properties of 

the membrane are an important contributor to the lowest energy conformation of a MS channel, and can 

either restrict or facilitate changes in state.  

B. Electrophysiology and Model Systems 

The first observations of ion flux in response to mechanical stimuli quickly followed the development 

of the patch-clamp technique in the mid-1980s. This technique allows one to record the current passing 

across a small patch of membrane tightly sealed to the tip of a thin glass capillary pipette (reviewed in 32). 

A key aspect of this technique is the formation of a high resistance “gigaseal” between the membrane and 

the glass (on the order of 1GOhm or higher). When positive or negative pressure is applied to the 

Page 6 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 7

membrane patch through this glass recording pipette, the membrane (and any associated cytoskeletal 

components) is deformed. The opening and closing of individual mechanically gated ion channels can 

then be observed over time 33, 34. Early patch-clamping experiments resulted in the identification of 

stretch-activated ion channels in animal cells known to be specialized for mechanical perception 35-38. 

Similar activities were soon identified in non-specialized cells 36, 39, leading to the proposal that sensitivity 

to mechanical stimuli might be a basic cellular feature 22, 40. In the decades since these first studies, many 

families of MS channels have been identified and characterized in bacteria, plants, animals, and archaea 

(reviewed in 41-43). MS channels can be activated by membrane tension introduced through the patch 

pipette as described above, by the swelling associated with hypo-osmotic shock, or by treatment of cells 

with membrane-bending amphipaths. Their function has been investigated in endogenous membranes, in 

a variety of heterologous systems, and even reconstituted into artificial membranes. Leading the way in 

many of these studies is a suite of bacterial channels, arguably the best studied and best-understood 

mechanoperceptive proteins at the functional, structural, and biophysical levels. 

III. E. coli MscL, MscS, and MscM 

A. Identification 

Identifying MS channels in bacteria by electrophysiological analysis at first presented several 

challenges as an E. coli cell is smaller than the diameter of a typical patch pipette tip, and has a 

peptidoglycan layer between the inner and outer membranes 44, 45. This problem was solved by treating 

cultures with an inhibitor of cell division and then enzymatically digesting the peptidoglycan layer. These 

treatments result in the production of “giant E. coli protoplasts” amenable to patch clamp 

electrophysiology 46. Using this approach, the Kung group measured current induced in response to 

membrane stretch in E. coli and observed a robust tension-sensitive channel activity 44. Subsequent 

studies established that at least three distinct channel activities are detectable in the inner membrane of E. 

coli—the mechanosensitive channels of large, small, and mini conductances. MscL, MscS, MscM 
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 8

activities each have different conductances (3 nS, 1 nS and 0.3 nS, respectively) and are activated at 

decreasing thresholds of pressure 17, 47-49.  

B. Cloning 

It is now established that the three classic activities of the E. coli membrane, MscL, MscS and MscM, 

represent a complex combination of activities provided by two distinct families of MS channels. The E. 

coli mscL gene was cloned through a fractionation/reconstitution and microsequencing strategy 50 and 

found to be essential for MscL activity. The mscS/yggB gene was identified through a combination of 

forward and reverse genetic approaches, and along with mscL is underlies the primary response of an E. 

coli cell to rapid increases in membrane tension 51. While the MscS and MscL proteins are structurally 

and evolutionarily unrelated, at least part of the originally observed MscS activity can now be attributed 

to the action of another channel with homology to MscS, now referred to as kefA/MscK 52 (for more on 

MscK, see below). When either MscL 50 or MscS 53 monomers are purified, assembled into channels, and 

reconstituted into artificial liposomes, both show characteristics indistinguishable from that in native E. 

coli membranes, indicating that neither requires additional cellular structures for mechanosensitivity. 

Thus, both MscS and MscL are gated in direct response to lipid bilayer deformation, as in the intrinsic 

bilayer model (Fig. 1A). Relatively less is known about MscM, though recent reports have demonstrated 

that YjeP and YbdG, two more homologs of MscS, are likely to underlie this elusive activity 54, 55.  

C. Physiological Function 

Bacterial cells are found in a variety of dynamic environments, frequently requiring them to adapt to 

changing osmotic conditions. In order to maintain turgor pressure during exposure to hyperosmotic stress, 

bacterial cells accumulate osmolytes that are compatible with cellular metabolism 56. On the other hand, a 

sudden shift to hypoosmotic conditions will cause a rapid influx of water across the lipid bilayer, leading 

to increased membrane tension (reviewed in 34, 57). It has been estimated that a mere 20 mM drop in 

external osmolarity can result in membrane tensions that approach lytic levels if unrelieved 34. A 
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 9

hypoosmotic shock of this type might occur when soil bacteria are caught in the rain, when marine 

bacteria migrate to freshwater or during the transmission of pathogenic bacteria through excrement. 

Without a rapid response, these shocks would lead to a compromised cell wall, leaving the cell vulnerable 

to lysis 58. 

It had long been proposed that bacterial cells were capable of relieving this type of environmental 

hypoosmotic stress by facilitating the exit of osmolytes from the cell, thus ensuring the physical integrity 

of the cell under increased turgor 45, 56, 59. We now know that the primary mechanism for hypoosmotic 

shock survival is the activation of MS channels, which allows the passive diffusion of nonspecific 

osmolytes out of the cell, relieving membrane tension and preventing cellular lysis. E. coli strains with 

lesions in both mscL and mscS show reduced survival of hypoosmotic shock though single mutations have 

no discernable effect 50, 51. Mutants lacking YbdG also show a small defect in osmotic shock survival 54 

and the overexpression of YjeP promotes survival in the absence of all other MS channels 55. Thus, these 

bacterial MS channels are often referred to as osmotic “safety valves” 60 and have been proposed to 

provide a graded series of responses allowing the bacteria to tune its response to different osmotic 

challenges under different environmental or developmental conditions 13, 45, 48, 52, 61. 

 

MSCS and MSCS-LIKE CHANNELS: CONSERVATION AND DIVERSITY 

These classic mechanosensitive channels from E. coli described above not only serve important 

biological functions, but MscL and MscS have also become leading model systems for the study of MS 

channel structure and function. Here we focus on the structure and function of the bacterial 

mechanosensitive channel MscS and its homologs in E. coli, other microbes, and in eukaryotes. Several 

excellent reviews on MscL have recently been published 57, 62, 63. 

I. Structure 
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 10 

Crystallographic studies of MscS structure are beginning to answer the fundamental question of how 

mechanosensitivity is accomplished in MscS-type channels (recently reviewed in 64). At present, five 

structures of prokaryotic MscS homologs have been solved: wild type E. coli MscS (EcMscS) in both 

open and nonconducting (not necessarily closed, see below) conformations 65-67, a point mutation of 

EcMscS that likely represents the open conformation, and MscS homologs from Thermoanaerobacter 

tengcongensis (TtMscS)68 and Helicobacter pylori (HpMscS)65 in nonconducting conformations. Four of 

these structures are shown in Figure 2.  A cartoon representation of each is shown from the side (left 

panel), and both cartoon and space-filling models are shown from the periplasmic surface (middle and 

right panels). A fragment containing the three TM domains and the upper vestibule from a single 

monomer of each of these structures (including amino acids 27-175 for EcMscS) is shown in Figure 3. 

Despite the inevitable possibility of artifacts associated with packing contacts and protein-detergent 

interactions 21, 69, 70, these structures provide an invaluable source of information about the molecular 

mechanism of gating and the relationship between channel structure and electrophysiological behavior.  

A. Nonconducting and Open Conformations of EcMscS and Homologs 

Nonconducting Conformations. The first crystal structure of EcMscS was solved by the Rees group 

at 3.7 Å resolution 66, 67 (Fig 2A) and revealed a homoheptameric channel with three transmembrane alpha 

helices per monomer and a large, soluble C-terminal domain. This oligomeric state and topology were 

subsequently verified experimentally 71-73. As shown in Figure 3, each monomer contributes three tightly 

packed N-terminal transmembrane (TM) alpha helices to the transmembrane region. TM1 (residues 28 - 

60) and TM2 (residues 63 - 90) face the membrane, while TM3 (residues 93 - 128) lines the channel pore. 

(The residues assigned to each helix are as in 64). One striking feature of the structure is a sharp kink at 

Q112/G113, which divides TM3 into TM3a, which is roughly perpendicular to the membrane, and TM3b, 

which is almost parallel to the membrane (Fig. 3A). The narrowest constriction of the pore has a diameter 

of 4.8 Å, and is created by two rings of Leucine residues (L105 and L109) with inward facing side chains. 
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 11 

These hydrophobic rings prevent the wetting of the pore and thereby serve as a “vapor lock” to the 

movement of ions through the channel 74, 75. Mutational analysis of L105 confirmed its importance in 

maintaining the closed state 71. The C-terminal region of each monomer contributes to a large hollow 

structure referred to here as the “vestibule”. The vestibule comprises seven side portals and one axial 

portal located at the base of the vestibule, formed by a seven-stranded β-barrel. 

Originally thought to be the open conformation, this structure it is now generally agreed to represent a 

nonconducting state. It is unlikely to represent the normal closed conformation, because TM1 and TM2 

are not in contact with TM3, an expected requirement for tension-sensitive gating (see the section on 

“force-sensing” below)34, 76. A number of molecular dynamics (MD) simulations further support this 

conclusion 74, 77, 78. The recently reported structures of TtMscS (Fig 2B) and HpMscS (not shown) exhibit 

similar transmembrane helix organization and pore size as the original EcMscS structure, and therefore 

are also considered to represent nonconducting states 65, 68. The C-terminal vestibule of TtMscS has 

several differences in structure from that of EcMscS, which are shown to modulate the conducting 

properties of the channel and are discussed below.  

Open Conformations. Though invaluable for establishing the basic structure of MscS, 

nonconducting structures give limited insight into the channel’s gating mechanism. In a directed attempt 

to solve the structure of MscS in an alternate conformation, the Booth and Naismith groups crystalized 

the A106V point mutation of EcMscS at 3.45 Å resolution 79, Fig. 2C. The resulting structure has a 

substantially increased pore size (approximately 13 Å in diameter) due to a rearrangement of 

transmembrane helices. TM1 and TM2 are angled away from TM3b and the channel core, while TM3a is 

tilted away from the plane of the membrane and rotated slightly away from the pore (compare Fig 3A and 

C). TM3b and the upper vestibule are mostly unchanged compared to the nonconducting structures. These 

rearrangements place the vapor-lock residues out of the pore, as previously predicted based on 

experimental and modeling data 80-82. A pulsed electron-electron double resonance (PELDOR) approach 83 
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revealed that two EcMscS mutants, spin-labeled at D67C (PDB 4AGE) or L124C (4AGF), took a similar 

conformation in solution, indicating that it is not an artifact of crystal packing nor of the particular A10V 

mutation 84. Further confirmation that the A106V structure properly resembles the open state comes from 

a recent report describing wild type EcMscS solubilized in a different detergent (β-dodecylmaltoside 

instead of fos-choline-14), at a resolution of 4.4 Å (65 Fig. 3D). This structure closely resembles the 

A106V EcMscS structure, establishing a solid consensus regarding the open state structure of EcMscS. 

B. Gating Mechanism 

Despite having multiple crystal structures attributed to different states of MscS, as well as an array of 

mutational and functional data that have determined functionally important residues, the actual 

mechanism of transition between closed and open states is still not completely clear. While several 

models have been proposed based on MD simulations 81, 85 and electron paramagnetic resonance (EPR) 

spin labeling 82, the model which is currently favored is one wherein membrane tension induces the 

rotation and tilting of TM1 and TM2 as a whole, immersing them more deeply into the surrounding lipid 

bilayer. This movement pulls TM3a away from the pore until it’s oriented almost normal to the 

membrane plane, effectively removing the L105 and L109 vapor lock side chains and opening the channel 

to ion flux 64, 79. In all of the crystal structures described above, the positioning of TM1 and TM2 with 

respect to each other is the same, as if they act like a rigid lever (compare Fig 3.A, B to Fig. 3C and D). 

Assuming that the newly obtained crystal structures described above indeed represent nonconducting and 

open states, the “rigid-body” movement model of transition into the open state may be considered the 

most probable.  

Lipid-protein interactions must occur at the periphery of the channel, which in MscS is likely to be 

comprised of TM1 and TM2. Hydrophobic residues in the protein-lipid interface of TM1 and TM2 were 

shown in several site-directed mutagenesis studies to affect tension sensitivity and osmotic shock 

protection 86, 87. In addition, an interaction between F68 in TM2 and L111 in TM3 was shown by 
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electrophysiology and mutational analysis to be of critical importance for force transmission from lipid-

facing helices to the pore region; disruption of this inter-helical contact results in channel inactivation 76. 

These data are consistent with a model wherein TM1 and TM2 serve as a tension sensor, transmitting 

force from the membrane to TM3; subsequent rearrangement of TM3 helices results in channel gating. It 

is intriguing to consider MscS homologs that possess additional N-terminal transmembrane helices (for 

several examples, see Figure 4). Additional helices may shield TM2 and TM3 from lipid environment of 

membrane or serve as tension sensors themselves, transmitting force to the pore-lining helix through a 

different (yet unknown) mechanism 88.  

C. Contributions by the C-terminus 

Though the structure of the C-terminal vestibule is virtually unchanged in all the crystal structures 

assigned to open and nonconducting states of EcMscS, other evidence indicates that this portion of the 

channel may be subject to conformational changes during opening, closing and inactivation transitions. 

Analyses of multiple deletion and substitution mutants have established that the vestibule is important for 

channel function and stability 71, 89, 90, and that interactions between the upper surface of the vestibule and 

the TM domain can affect gating as well as inactivation behavior 91, 92. Co-solvents that induce 

compaction of the C-terminal domain have been shown to facilitate MscS inactivation 93, while 

experiments utilizing FRET to quantify the diameter of the cytoplasmic domain showed that it swells 

during gating 94. Taken together, these data indicate that gross structural remodeling of the vestibule and 

its interactions with the transmembrane domain likely accompanies inactivation and gating cycles.  

In addition, recent reports support a role for the C-terminus as an ion selectivity filter. In EcMscS, 

ions likely do not enter the vestibule through the axial β-barrel, as the portal that it forms is too narrow 

(1.75 Å in its narrowest part); rather, they probably travel through the seven side portals into the vestibule 

and then cross the pore. MS simulations suggest the vestibule serves to filter and balance charged 

osmolytes prior to their release from the cell, keeping ion efflux largely neutral in charge and thereby 
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preventing membrane depolarization 95. Another correlation between vestibule structure and ion 

selectivity comes from recent studies of TtMscS 68. Compared to EcMscS, TtMscS has smaller side 

portals but a much wider axial portal; at the same time it has a much higher selectivity for anions (see 

below for a discussion of ion selectivity). A version of TtMscS where the axial β-barrel sequence (amino 

acids 271 to 282) was replaced with the corresponding portion of EcMscS lost this preference for anions, 

indicating that this small portion of the C-terminus can strongly influence overall channel behavior.  

D. Summary 

The five independently derived crystal structures of bacterial MscS homologs available to date have 

revolutionized our understanding of the overall architecture of bacterial MscS homologs, provided 

context for the interpretation of mutagenic data and MD simulations, and established a sophisticated 

foundation for furthering our understanding of the gating cycle. We note that no crystal structures have 

yet been reported for archaeal or eukaryotic MscS homologs; such a structure would be a major step 

forward for those interested in the evolutionary diversification of this family of proteins. 

II. Evolutionary History 

The MscS protein superfamily is vast and diverse, with members found in most bacterial, archeal, 

some fungal, and all plant genomes so far analyzed 96-101. However, MscS family members have not yet 

been found in animals. It has been suggested that MS channels first evolved in an ancestor common to all 

cell-walled organisms and have been maintained throughout these lineages as a solution to osmotic stress 

and regulation of turgor pressure 96, 97, 102. Another explanation is that the membrane reservoirs of animal 

cells allow hypoosmotic swelling without producing membrane tension, or that mammalian membranes 

do not stretch due to their close association with the cytoskeleton 103, 104. Alternatively, MscS homologs 

could simply be unrecognizable in animal genomes by current homology-based searches.  

Mapped onto the MscS structure, the conserved domain comprises the pore-lining helix (in MscS, this 

is TM3) and the upper part of the cytoplasmic vestibule. Outside of this domain MscS family members 

Page 14 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15 

vary greatly in sequence and topology. The number of predicted TM helices for MscS family members 

ranges from 3 to 12 and a variety of conserved domains, including those associated with the binding of 

Ca2+ and cyclic nucleotides, have been identified in some subfamilies 51, 96, 105, 106. Furthermore, multiple 

MscS homologs are frequently identified within a single organism (including many bacterial and all plant 

genomes analyzed to date), suggesting that functional specialization of MscS homologs has evolved both 

and within a single organism. Our current understanding of the physiological function of MscS homologs 

from bacteria, fungi, plant cells and plant organelles is described below and summarized in Table 1.  

III. Physiological Function 

While it has been clearly established that MscL and MscS serve to protect cells from extreme 

environmental hypoosmotic shock, it is becoming evident that the functions of the members of this family 

may be more complex. An emerging theme is that MscS homologs have evolved specific functions 

tailored to the needs of the organism, including the release of specific cellular osmolytes in response to 

specific environmental or developmental osmotic triggers.  

A.  Prokaryotes 

E. coli. We know by far the most about the six MscS family members encoded in the E. coli genome 

(MscS, MscK, YjeP, YbdG, YbiO, and YnaI) 51. Research into their physiological roles suggests that they 

all serve to release osmolytes from the cell under hypoosmotic stress but that their function is only 

required for cell viability under specific conditions. Even MscS may serve specialized roles, as MscS 

protein levels fluctuate. MscS levels are elevated during growth at high osmolarity, possibly a preemptive 

method of dealing with an impending downshock, and during stationary phase, perhaps to deal with the 

osmotically vulnerable state of cell wall remodeling 107, 108. MscK contributes modestly to cell survival 

during standard osmotic shock assays (Levina 1999; McLaggan et al., 2002 Molecular Microbiology and 

Li et al., 2002 EMBO) and its mechanosensitive channel activity requires the presence of K+ ions in the 

extracellular solution. It has been proposed that binding of K+ primes the channel for gating. Such an 
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activity may be required for survival in soils with high concentrations of animal urine or within the 

kidneys during host infection 109. The remaining E. coli MscS family members (YbdG, YjeP, YbiO and 

YnaI) can provide osmotic shock protection when overexpressed in E coli 54, 55, and the latter three 

activities may simply be expressed at too low levels to contribute under normal laboratory assay 

conditions. Indeed, the occurrence of the previously uncharacterized 20 picoampere (pA) 

mechanosensitive channel activity attributed to YbiO increased dramatically when cells were treated with 

NaCl prior to patching 55.  

Other species. The 3 MscS homologs (yhdy, yfkC, and yukT) of the gram-positive bacterium B. 

subtlilis are dispensable for osmotic shock survival in the laboratory, though the mscL yukT double 

mutant strain exhibits enhanced osmotic sensitivity compared to the mscL single deletion strain 110-112. As 

B. subtlilis is found in both the soil and the human gut, there may be specific growth conditions wherein 

these MscS homologs contribute to osmotic homeostasis that are not replicated in the laboratory 

environment.  Other prokaryotic MscS homologs have been identified that provide tantalizing ideas about 

the variety of ways in which this family of channels may have evolved to provide osmotic adjustment in 

response to different environmental and developmental stimuli. The gram-positive bacterium 

Corynebacterium glutanicum is used in the industrial production of glutamate and other amino acids 113. 

Its genome encodes homologs of both MscL and MscS (MscCG/NCgl1221), but neither is required for 

cell survival in laboratory-based osmotic downshock assays 114, 116. Instead, MscCG is involved in 

regulating the steady state concentration of glycine betaine (the preferred compatible osmolyte of C. 

glutanicum) in response to both hypo- and hyperosmotic stress 115. MscCG is also essential for glutamate 

efflux in response to biotin limitation and penicillin treatment, notably in the absence of hypoosmotic 

stress 116, 118.  Several lines of evidence, including the analysis of loss-of-function and gain-of-function 

lesions in the predicted pore-lining helix, support the model that MscCG directly mediates the efflux of 

glutamate and that this efflux is dependent on mechanosensitive channel gating 116-119. Thus, MscCG is 
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likely a mechanically gated MscS homolog that is involved in osmotic adjustment of specific compatible 

solutes in response to multiple stimuli.  

Finally, there are indications that MscS family members are important for pathogenesis and 

metabolism, perhaps indicating the importance of osmotic adjustment in these processes. Two MscS 

homologs from the food-borne pathogen Campylobacter jejuni, Cjj0263 and Cjj1025, were recently 

found to be required for colonization of the digestive tract of chicks 120, and a Pseudomonas aeruginosa 

MscK ortholog has been associated with virulence 121. PamA, a MscS homolog from the photosynthetic 

cyanobacterium Synechocystis sp.PCC6803 was reported to interact in vitro and in vivo with PII, a highly 

conserved carbon/nitrogen sensor 122, 123. Furthermore, nitrogen response and sugar metabolic genes show 

altered expression in the absence of PamA, suggesting that it may serve to integrate carbon and nitrogen 

metabolism with osmotic conditions. Taken together, these preliminary studies illustrate how much more 

has yet to be revealed regarding MscS homolog function in the prokaryotic world. 

B. Eukaryotes 

While less studied than their prokaryotic counterparts, recent research offers a few glimpses into the 

important functions and novel characteristics of the eukaryotic members of the MscS family. Sequence 

similarities place them into two major classes (described in 98). Class II members are predicted to localize 

to the plasma membrane or intracellular membranes of both plants and fungi. Class I channels, which 

show slightly more sequence conservation to MscS than those in class II, are predicted to localize to 

endosymbiotic organelles (mitochondria and plastids such as chloroplasts), and are found only in plant 

genomes.  

Class I. Considering the origin of endosymbiotic organelles (the engulfment of a primitive bacterium), 

the MscS homologs found in their envelopes are likely to have a conserved function as osmotic safety 

valves, but in this case protecting mitochondria and plastids from fluctuations in intracellular rather than 

extracellular osmotic concentrations 15. The Mechanosensitive Channel (MSC)1, from Chlamydomonas 
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reinhardtii localizes to punctate spots associated with the single plastid found in these cells, and  plastid 

integrity is lost when the MSC1 gene is silenced by RNAi (Nakayama 2007). To date, MSC1 is the only 

Class I MscS homolog to be successfully characterized by electrophysiology (see below). Like MSC1, 

MscS-Like (MSL)2 and MSL3 of Arabidopsis thaliana localize to distinct foci in the plastid envelope. 

These two land plant Class I homologs are required for normal plastid shape and size and for proper 

placement of the plastid division ring 124, 125. Proteins involved in the regulation of division site placement 

are often conserved between plastids and bacteria, and abnormal division ring placement in an E. coli 

strain lacking MscL, MscS, and MscK suggest that this may hold true for MS channels as well 125, 126. The 

large, round plastid phenotype of the msl2 msl3 mutant can be suppressed by a variety of genetic and 

environmental treatments that increase cytoplasmic osmolyte levels, indicating that plastids are under 

hypoosmotic stress from within the cytoplasm and that MSL2 and MSL3 are required to relieve that stress 

127. Several Class I MscS homologs from land plants are predicted to localize to the mitochondria 98, 101, 

but their study has not yet been reported.  

Class II. The identification of MscS homologs in plant genomes 96, 97 was exciting for plant biologists 

because it provided candidate genes for the MS channel activities already known to be widespread in 

plant membranes 98. However, while the Arabidopsis genome contains seven MSL proteins that are 

predicated to localize to the plasma membrane, and they exhibit distinct tissue-specific expression 

patterns 96, 98, a clear physiological function has yet to be assigned to any (though MSL10 has been 

characterized by patch-clamp electrophysiology, see below). The recent characterization of two 

endoplasmic reticulum-localized MscS homologs from Schizosaccharomyces pombe, Msy1 and Msy2, 

suggests that these channels may serve as hypoosmotic stress signaling molecules as much as osmotic 

safety valves 105. msy1- msy2- mutant cells exhibit greater swelling and higher Ca2+ influx upon 

hypoosmotic shock, and are more likely to subsequently undergo cell death. Consistent with this idea, we 
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have proposed that MSL10 could play a role in hypoosmotic stress signal transduction through membrane 

depolarization 128. 

C. Summary 

To conclude, current evidence indicates that members of the MscS superfamily exhibit unique forms 

of regulation and variations of function. While all are variations on a common theme—action as an 

osmotic conduit in response to membrane tension—the proteins within this family may have become as 

diverse as the organism in which they reside. We anticipate that more precise analyses, under diverse 

growth conditions and at the single cell or organellar level, will reveal the role played by these channels 

in the osmotic homeostasis of cells and organelles.    

IV. Electrophysiological Behavior 

Besides EcMscS, many MscS superfamily members have been shown to be mechanosensitive, 

including five others from E. coli (MscK, YbdG, YnaI, YjeP, and YbiO)54, 55, 109 and three from other 

bacterial species (TtMscS from Thermobacter tengcongensis 68, MscSP from Silicibacter pomeroyi 129, 

and MscCG from Corynebacterium glutamicum 115. Two MscS homologs from the archaea 

Methanococcus jannaschii, MscMJ, and MscMJR have been characterized 102, 130, as have two channels 

from photosynthetic eukaryotes (MSC1 from Chlamydomonas reinhardtii and MSL10 from Arabidopsis 

thaliana 128, 131. Despite striking differences in topology and sometimes very low sequence identity, these 

channels demonstrate surprisingly conserved behavior in many aspects. Their major characteristics are 

shown in Table 2 and discussed in further detail below. Not included here are possible MscS-like 

channels from B. subtlilis 132, S. faecalis 133, and the bCNG family 106. 

A. Conductance and Ion Selectivity  

While MscL forms a large, completely nonselective pore, MscS is slightly anion-selective, preferring 

Cl- ions over K+ ions by a factor of as much as 3 (PCl- : PK+ = 1.2 – 3 53, 109, 134, 135). MscSP closely 

resembles EcMscS in sequence and in channel characteristics with a 1 nS single-channel conductance and 
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PCl- : PK+ = 1.4 129. MscK also has a conductance close to that of MscS 51, 109. However, some variation 

is observed among the bacterial channels, with a smaller conductance typically associated with more 

selectivity. MscCG has a single-channel conductance of 0.3 nS, about one-third the size of that provided 

by EcMscS, and prefers cations (PCl- : PK+ = 0.3) 115. YjeP has a similar conductance, and is also likely to 

have a preference for cations, as this was the early characterization of MscM activity (PCl- : PK+ = 0.4). 

However, the ion selectivity of YjeP has not yet been assessed directly 48, 55. As described above, TtMscS 

has a single-channel conductance approximately half that of EcMscS and is more strongly anion-selective 

(PCl- : PK+ = 8.7) 68.  

Though few archaeal or eukaryotic channels have yet been studied, what we know so far indicates a 

range of conductances and selectivities similar to those described for bacterial channels. MscMJ (270 pS) 

and MscMJLR (2 nS) vary considerably in conductance, but both exhibit a similar preference for cations 

(PCl- : PK+ = 0.16 and 0.2, respectively) 102, 130.  MSC1 and MSL10 are quite similar: both have 

conductances around a third of that of MscS under similar conditions and both show a preference for 

anions (PCl- : PK+ = 7  and 6, respectively) 128, 131, 136. Once additional homologs are characterized, it can be 

determined if these particular examples are characteristic of archaeal and eukaryotic channels. Given the 

wide range of sequence similarity in the pore region it is perhaps surprising how similar the MscS 

homologs described are: all of them have weak to moderate ionic preferences and a single-channel 

conductance which falls approximately into a 4-fold range (under similar conditions, see Table 1 for 

details). 

B. Gating tension  

MscL is gated by tensions that are close to lytic, and is often used as an internal reference for other 

mechanosensitive channels. The threshold tension for activation of MscS, MscK, YjeP and MscCG 

activity is approximately one half of that of MscL (MscL : MscS = 1.6, MscL : MscK = 1.9 - 2.2, MscL : 

YjeP = 1.6) 51, 55, 109, 118, 137.   Unexpectedly, YnaI and YbiO are gated by tensions almost as high as for 
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MscL 55.  MscSP is less tension-sensitive than MscS and its threshold activation ratio MscL : MscSP was 

reported to be 1.28 129. For the archaeal channels it was found that MscMJ is gated at intermediate 

tensions (MscL : MscMJ = 1.3) and MscMJLR at lower tensions (MscL : MscMJLR = 2.5) 102, 130. If the 

tension at which a MS channel gates can be considered an indication of the stimuli to which the channel 

has evolved to respond, it seems likely that MscS homologs from different species respond to the same 

type of stimulus, as in general they share similar gating thresholds. 

C. Inactivation and desensitization 

Models of the MscS activation cycle typically include four distinct states: open, closed, inactive and 

desensitized 51, 93, 137, 138. The latter three states are distinct: in the closed state the channel can easily be 

gated by threshold tension. In the inactive state, the channel cannot make a transition to the open state 

under any tension, while a desensitized channel could be gated by the application of increased tension. 

However, for a channel subjected to a fixed membrane tension, the effects of inactivation and 

desensitization are indistinguishable and manifest themselves as sharp or gradual current decay in patch-

clamp recordings. In this case, the terms “inactivation” and “desensitization” are often used 

interchangeably. While inactivation and/or desensitization under sustained membrane tension have been 

reported for MscS expressed in several systems 85, 136, 137, MscSP, MscCG, MscK, MscMJ and MscMJLR 

do not desensitize 51, 102, 109, 115, 129, 130. MSL10 does not show any significant signs of inactivation 128, while 

MSC1 inactivates at positive membrane potentials, but not at negative 131. These results leave unclear the 

physiological relevance of inactivation 57. 

D. Hysteresis  

Another feature of mechanosensitive channel behavior is hysteresis, or a difference between the 

tensions required for opening and closing. In the case of MscS, which is routinely observed to close at 

higher tensions than at which it opened (summarized in 52), this phenomenon was at least partially 

attributed to the artifacts of membrane patch structure 139. The eukaryotic channels MSC1 and MSL10 
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also show hysteresis, but of a different type. These channels typically close at a lower tension than at 

which they opened. Strikingly, a subpopulation of both types of channels often is observed to stay open 

even after all membrane tension has been released 128, 131. There are no reports of any functional 

importance attributed to this phenomenon, but the continuous slow depolarization of the membrane due to 

channels staying open after membrane tension is relieved could result in the gating of depolarization-

activated channels and/or the propagation of a systemic signal. 

E. Summary  

Despite limited sequence identity, the MscS family members so far characterized share similar basic 

channel characteristics such as conductance and ion selectivity. Other behaviors observed under patch 

clamp, such as hysteresis and inactivation/desensitization, are more variable and unclear physiological 

relevance. One could speculate that the conserved features of these channels reflect their common 

function (rapid release of osmolytes in response to membrane tension) while their characteristic 

differences reflect the specific natures of their ecological niches 55. Additional examples may help to 

determine the functional range of properties that have been selected by evolution.  

V. Topological Diversity in the MscS Superfamily 

The increased topological complexity of MscS family members (as described above and illustrated in 

Figure 4) has been taken to imply regulatory complexity 21, 100, and data is accumulating that suggest this 

may indeed be the case. Many members of the MscS family contain N- and C-terminal domains 

dramatically larger than that of MscS, presenting the possibility of additional functions and regulation 

sites. For example, the unusually large periplasmic N-terminal region of MscK could regulate channel 

activity by preventing gating in the absence of high K+ 109, 140. Removal of the N-terminal region of MscK, 

including TM helices1-9, abolishes K+-dependent gating and promotes its ability to provide protection 

from hypoosmotic shock 71. Similarly, the presence of an extra TM helix C-terminal to the pore-forming 

helix is unique to MscCG, and can confer the ability to facilitate glutamate efflux when fused to EcMscS 
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118. Proteins comprising the bCNG family all encode a large soluble C-terminal domain containing a 

cyclic nucleotide-binding domain. This domain has been shown to negatively regulate the 

mechanosensitive channel activity of one of the family members 106, 141.  

The eukaryotic family members show topology that is just as diverse. A variety of physiological 

functions have been attributed to the chloroplast channels MSL2 and MSL3, which contain a C-terminal 

cytoplasmic domain three times the size of the MscS soluble domain 125, 142. Although the regulatory and 

functional importance of this domain has yet to be confirmed, preliminary evidence suggests that a highly 

conserved domain within this region is required for proper subcellular localization and channel function 

in vivo (E. S. Haswell, unpublished). Class II (plasma membrane- and ER-localized) eukaryotic homologs 

of MscS, such as MSL10, typically share a common topology of 6 TM regions, large soluble N- and C-

termini, and a large cytoplasmic loop between TM helix 4 and 5 98, 105, suggesting that their conserved 

structure serves a eukaryote-specific function. The large cytoplasmic regions of many Class II proteins 

suggest a number of possible regulatory mechanisms. For example, Mys1 and Mys2 contain an EF-hand 

Ca2+-binding motif 143 in the large cytoplasmic loop between TM4 and TM5. Genetic analyses suggest 

that this region is important for sensing and/or controlling Ca2+ influx as well as contributing to channel 

function in response to hypoosmotic stress 105.     

 

FUTURE DIRECTIONS 

As we hope we have demonstrated above, these are exciting times for scientists who study 

mechanosensitive ion channels. Every new detail regarding the structure, the physiological function, and 

the biophysical parameters that govern the gating mechanism of EcMscS adds to our understanding of E. 

coli biology, and helps elaborate an important model system for the study of mechanosensitivity. 

Prokaryotic homologs of MscS provide additional examples of the ways in which various bacteria might 

exploit the membrane tension sensor and osmotic safety valve provided by a MscS family member. The 
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suggestion that more diverged MscS families may have additional regulatory mechanisms overlaid onto a 

conserved mechanosensitive channel core is particularly interesting in this regard 106. The coming years 

should also bring a greater understanding of the role played by the diverse eukaryotic family of MscS 

homologs. Eukaryotic cells respond to osmotic stress differently than bacteria, inducing cell signaling 

pathways in addition to releasing osmolytes 19 Studies of the yeast Msy1 and Msy2 suggest that they 

might play a role in both of these responses 105; further investigation will establish this point. New 

discoveries are also likely as some of the technical challenges associated with the study of 

mechanosensitive channels are overcome. Approaches to investigate osmoregulation and osmotic stress 

response in single cells and organelles may reveal more subtle phenotypes than can be detected in a 

bacterial culture or from a whole-plant phenotype. The development of fluorescent biosensors that report 

on ion flux, pH, transmembrane voltage, and membrane tension could produce unexpected insights into 

the function of MscS-Like mechanosensitive channels in their endogenous cellular context.  
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TABLES 

Table 1. Single-channel properties of MscS family members.  
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Table 2. Physiological function of MscS family members. 

 

 

FIGURE LEGENDS 

Figure 1. Schematic representation of models for mechanosensitive channel gating. (A) The 

intrinsic bilayer model, wherein lateral membrane tension favors the open state of the channel. (B) The 
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tethered trapdoor model, wherein a tether to an extracellular (in this case) component exerts force on the 

channel, leading to its gating. (C) The unified model, wherein a tether to an extracellular component leads 

to reorientation of the channel within the membrane bilayer, thereby gating it. 

Figure 2. Crystal structures of E. coli MscS and homologs. (A) EcMscS in “inactive/non-

conductive state” (2OAU, Steinbacher, 2007); (B) TtMscS from T. tengcongensis in “closed” state 

(3UDC, Zhang, 2012); (C) A106V EcMscS mutant in “open” state (2VV5, Wang, 2008); (D) EcMscS in 

“open” state (4HWA, Lai, 2013). The monomers in a heptamer labeled by color; surface map, viewed 

from the periplasm is truncated at I175 in order to display unobstructed channel pore. Left panel: side 

view of the heptametic channel; middle panel: view of the channel from the periplasmic side; right panel: 

space-filling representation of the channel with a pore, view from the periplasmic side. Basic residues are 

blue, acidic residues are red, polar residues are green, non-polar residues are white. The images were 

generated with VMD software (University of Illinois).  

Figure 3. The conserved region of EcMscS and TtMscS monomers in different conformations. A 

single monomer of (A) EcMscS (aa 27-175) in a nonconducting state (2OAU, Steinbacher, 2007); (B) 

TtMscS (aa 13-175) in a nonconducting state (3UDC, Zhang, 2012); (C) EcMscS A106V (aa 25-175) in 

an open state (2VV5, Wang, 2008). (D) Superposition of panel A (silver) with a single monomer of 

EcMscS (27-175) in an open state (4HWA, Lai, 2013, cyan). The kink-forming residues G113 (EcMscS) 

and G109 (TtMscS) are represented as blue spheres and the A106V mutation as a red sphere. The vapor-

lock residues L105 and L109 (EcMscS) and L104 and F108 (TtMscS) are labeled in yellow. F68 and 

L111, residues proposed to mediate the TM2-TM3 interaction in EcMscS (Belyy, 2010) are labeled 

magenta. Images were generated with VMD software (University of Illinois). 

Figure 4. Monomer topologies of representative MscS family members. MscS monomer topology 

was rendered based on Naismith, 2012. For the purpose of clarity TM3b of MscS is represented outside 

the lipid bilayer. MscK and MscCG topologies were predicted with TOPCONS (http://topcons.net/) and 
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ARAMEMNON (http://aramemnon.botanik.uni-koeln.de/) for MSL2 and MSL10. Processed versions of 

MscK and MSL2 are presented.   

 

 

Page 39 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 40 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 41 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Pa
ge

 4
2 

of
 4

3

A
C

S 
Pa

ra
go

n 
Pl

us
 E

nv
iro

nm
en

t

B
io

ch
em

is
tr

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60



Page 43 of 43

ACS Paragon Plus Environment

Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	Washington University in St. Louis
	Washington University Open Scholarship
	8-27-2013

	MscS-like mechanosensitive channels in plants and microbes
	Margaret E. Wilson
	Grigory Maksaev
	Elizabeth S. Haswell
	Recommended Citation


	Untitled

