35 research outputs found

    Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    Get PDF
    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5′-TGGTC-3′) than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain

    Using softer X-ray absorption spectroscopy to probe biological systems

    No full text
    Many inorganic species are now recognized as being essential for life, including many forms of sulfur, phosphate and numerous classes of metal ions. For example, recent progress in the fields of biochemistry and biology has pointed out the critical importance of sulfur in the biosynthesis of vital cofactors and active sites in proteins, and in the complex reaction mechanisms often involved. Special attention has also been drawn to the diverse roles of alkaline (Na+, K+) and alkaline earth (Mg2+, Ca2+) metal ions in mediating the activity of RNA, proteins and many processes in living cells. While the general effect of these ions in biology is mostly understood, information on their detailed role is deficient. Here the application of softer X-ray absorption spectroscopy (XAS) to probe the local structural and electronic environment of such ions within their biological complexes and during physiological reactions is discussed. In addition, the required experimental set-up and the difficulties associated with conducting softer XAS experiments on biological samples are presented.B. Akabayov, C. J. Doonan, I. J. Pickering, G. N. George and I. Sag

    DNA Sequence Context Controls the Binding and Processivity of the T7 DNA Primase

    No full text
    Summary: Primases are key enzymes involved in DNA replication. They act on single-stranded DNA and catalyze the synthesis of short RNA primers used by DNA polymerases. Here, we investigate the DNA binding and activity of the bacteriophage T7 primase using a new workflow called high-throughput primase profiling (HTPP). Using a unique combination of high-throughput binding assays and biochemical analyses, HTPP reveals a complex landscape of binding specificity and functional activity for the T7 primase, determined by sequences flanking the primase recognition site. We identified specific features, such as G/T-rich flanks, which increase primase-DNA binding up to 10-fold and, surprisingly, also increase the length of newly formed RNA (up to 3-fold). To our knowledge, variability in primer length has not been reported for this primase. We expect that applying HTPP to additional enzymes will reveal new insights into the effects of DNA sequence composition on the DNA recognition and functional activity of primases. : Biochemical Mechanism; Molecular Biology; Molecular Genetics Subject Areas: Biochemical Mechanism, Molecular Biology, Molecular Genetic

    Conformational dynamics of bacteriophage T7 DNA polymerase and its processivity factor, Escherichia coli thioredoxin

    No full text
    Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA

    Key feature of the catalytic cycle of TNF-α converting enzyme involves communication between distal protein sites and the enzyme catalytic core

    No full text
    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

    The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes

    Get PDF
    Scanning of the mRNA transcript by the preinitiation complex (PIC) requires a panel of eukaryotic initiation factors including eIF1 and eIF1A, the main transducers of stringent AUG selection. eIF1A plays an important role in start codon recognition; however, its molecular contacts with eIF5 are unknown. Using NMR, we unveil eIF1A’s binding surface on the carboxyl-terminal domain of eIF5 (eIF5-CTD). We validated this interaction by observing that eIF1A does not bind to an eIF5-CTD mutant, altering the revealed eIF1A-interaction site. We also found that the interaction between eIF1A:eIF5-CTD is conserved between human and yeast. Using GST pull down assays of purified proteins, we showed that the N-terminal tail (NTT) of eIF1A mediates the interaction with eIF5-CTD and eIF1. Genetic evidence indicates that overexpressing eIF1 or eIF5 suppresses the slow growth phenotype of eIF1A-NTT mutants. These results suggest that the eIF1A:eIF5-CTD interaction during scanning PICs contributes to the maintenance of eIF1 within the open PIC
    corecore