5,451 research outputs found
Nonlocality effects on spin-one pairing patterns in two-flavor color superconducting quark matter and compact stars applications
We study the influence of nonlocality in the interaction on two spin one
pairing patterns of two-flavor quark matter: the anisotropic blue color paring
besides the usual two color superconducting matter (2SCb), in which red and
green colors are paired, and the color spin locking phase (CSL). The effect of
nonlocality on the gaps is rather large and the pairings exhibit a strong
dependence on the form factor of the interaction, especially in the low density
region. The application of these small spin-one condensates for compact stars
is analyzed: the early onset of quark matter in the nonlocal models may help to
stabilize hybrid star configurations. While the anisotropic blue quark pairing
does not survive a big asymmetry in flavor space as imposed by the charge
neutrality condition, the CSL phase as a flavor independent pairing can be
realized as neutral matter in compact star cores. However, smooth form factors
and the missmatch between the flavor chemical potential in neutral matter make
the effective gaps of the order of magnitude keV, and a more
systematic analysis is needed to decide whether such small gaps could be
consistent with the cooling phenomenology.Comment: 18 pages, 7 figures, corrected version with revised parameterizatio
Vertex adjacencies in the set covering polyhedron
We describe the adjacency of vertices of the (unbounded version of the) set
covering polyhedron, in a similar way to the description given by Chvatal for
the stable set polytope. We find a sufficient condition for adjacency, and
characterize it with similar conditions in the case where the underlying matrix
is row circular. We apply our findings to show a new infinite family of
minimally nonideal matrices.Comment: Minor revision, 22 pages, 3 figure
Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment
Using angle-resolved photoelectron spectroscopy and ab-initio GW
calculations, we unambiguously show that the widely investigated
three-dimensional topological insulator Bi2Se3 has a direct band gap at the
Gamma point. Experimentally, this is shown by a three-dimensional band mapping
in large fractions of the Brillouin zone. Theoretically, we demonstrate that
the valence band maximum is located at the Brillouin center only if many-body
effects are included in the calculation. Otherwise, it is found in a
high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure
Asymptotic iteration method for eigenvalue problems
An asymptotic interation method for solving second-order homogeneous linear
differential equations of the form y'' = lambda(x) y' + s(x) y is introduced,
where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to
Schroedinger type problems, including some with highly singular potentials, are
presented.Comment: 14 page
Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the He + Bi System at Near-Coulomb-Barrier Energies
Based on an approach recently proposed by us, simultaneous
-analyses are performed for elastic scattering, direct reaction (DR)
and fusion cross sections data for the He+Bi system at
near-Coulomb-barrier energies to determine the parameters of the polarization
potential consisting of DR and fusion parts. We show that the data are well
reproduced by the resultant potential, which also satisfies the proper
dispersion relation. A discussion is given of the nature of the threshold
anomaly seen in the potential
Spin-one color superconductivity in compact stars?- an analysis within NJL-type models
We present results of a microscopic calculation using NJL-type model of
possible spin-one pairings in two flavor quark matter for applications in
compact star phenomenology. We focus on the color-spin locking phase (CSL) in
which all quarks pair in a symmetric way, in which color and spin states are
locked. The CSL condensate is particularly interesting for compact star
applications since it is flavor symmetric and could easily satisfy charge
neutrality. Moreover, the fact that in this phase all quarks are gapped might
help to suppress the direct Urca process, consistent with cooling models. The
order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but
their also small critical temperatures (T_c ~800 keV) could be relevant in the
late stages neutron star evolution, when the temperature falls below this value
and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference
Proceedings of "Isolated Neutron Stars: from the Interior to the Surface",
London, 24-28. April 200
- …
