1,391 research outputs found
Good Learning and Implicit Model Enumeration
MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation
Study of the stability of a paramagnetic label linked to mesoporous silica surface in contact with rat mesothelial cells in culture.
Stable radicals detectable by electron paramagnetic resonance (EPR) may be use in the investigation of early events in cell-particle toxicity. Piperidine-N-oxyl derivatives (nitroxides), covalently linked to the surface of a high surface area silica (used as model solid for the technique), served as probes in the investigation of the effects of incubation of silica particles with mesothelial cells. A mesoporous silica (MCM-41), prepared by precipitation from a micellar solution, was the most appropriate silica-based particle for this purpose, as its channels allow direct contact with small molecules but not with macromolecules. The cytotoxicity of this amorphous silica is very low, allowing relatively high particle loading in the cell cultures. Both the high surface area of the sample and the large amount of inorganic material extracted from the cell culture provide enough material to run reasonably intense EPR spectra. Computer-aided analysis of the EPR spectra of silica-bound nitroxides provided information on the sensitivity of the labeled silica monitoring different environments, e.g., to follow the path of particles in a mammalian cell culture. Upon contact of the particles with mesothelial cells, the mean distance among the labels at the silica surface decreased as a consequence of the release of oxidizing and/or radical moieties from the cells
Contribución al estudio de jarabes de sorgo argentinos
Hemos considerado conveniente realizar un estudio sobre la obtención de jarabes de sorgos cultivados en la Argentina, determinando su composición química en lo que se refiere principalmente al contenido de azúcares y tratando de obtener un producto más concentrado con el objeto de aumentar el poder edulcorante. También se ha probado la acción de solventes orgánicos en la purificación de dicho producto.Fil: Achard Wells, Nelly B.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: López Scala, Zulema. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Bosonic Quartic Couplings at LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study
anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W-
gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q
q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After
a careful study of the backgrounds and how to extract them from the data, we
show that the process p p -> j j gamma l+ l- is potentially the most sensitive
to deviations from the Standard Model, improving the sensitivity to anomalous
couplings by up to a factor 10^4 (10^2) with respect to the present direct
(indirect) limits.Comment: 18 pages, 2 figures, revised versio
High-Energy QCD Asymptotics of Photon-Photon Collisions
The high-energy behaviour of the total cross section for highly virtual
photons, as predicted by the BFKL equation at next-to-leading order (NLO) in
QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale
setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO
BFKL predictions for future linear colliders are presented.Comment: Latex, 7 pages, 4 figure
RECAST: Extending the Impact of Existing Analyses
Searches for new physics by experimental collaborations represent a
significant investment in time and resources. Often these searches are
sensitive to a broader class of models than they were originally designed to
test. We aim to extend the impact of existing searches through a technique we
call 'recasting'. After considering several examples, which illustrate the
issues and subtleties involved, we present RECAST, a framework designed to
facilitate the usage of this technique.Comment: 13 pages, 4 figure
Lepton flavor violating signals of a little Higgs model at the high energy linear colliders
Littlest Higgs model predicts the existence of the doubly charged
scalars , which generally have large flavor changing couplings
to leptons. We calculate the contributions of to the lepton
flavor violating processes and , and compare our numerical results with the current
experimental upper limits on these processes. We find that some of these
processes can give severe constraints on the coupling constant and the
mass parameter . Taking into account the constraints on these free
parameters, we further discuss the possible lepton flavor violating signals of
at the high energy linear collider
experiments. Our numerical results show that the possible signals of
might be detected via the subprocesses in the future experiments.Comment: 16 pages, 7 figures. Discussions and references added, typos
correcte
Constraint on the heavy sterile neutrino mixing angles in the SO(10) model with double see-saw mechanism
Constraints on the heavy sterile neutrino mixing angles are studied in the
framework of a minimal supersymmetric model with {\it double
see-saw mechanism}. A new singlet matter in addition to the right-handed
neutrinos is introduced to realize the double see-saw mechanism. The minimal
model gives an unambiguous Dirac neutrino mass matrix, which
enables us to predict the masses and the mixing angles in the enlarged neutrino mass matrix. Mixing angles between the light Majorana
neutrinos and the heavy sterile neutrinos are shown to be within the LEP
experimental bound on all ranges of the Majorana phases.Comment: 16 pages, 4 figures; the version to be published in Eur. Phys. J.
- …