31,666 research outputs found
Absorption of Energy at a Metallic Surface due to a Normal Electric Field
The effect of an oscillating electric field normal to a metallic surface may
be described by an effective potential. This induced potential is calculated
using semiclassical variants of the random phase approximation (RPA). Results
are obtained for both ballistic and diffusive electron motion, and for two and
three dimensional systems. The potential induced within the surface causes
absorption of energy. The results are applied to the absorption of radiation by
small metal spheres and discs. They improve upon an earlier treatment which
used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript
Drivers for change in primary care of diabetes following a protected learning time educational event: interview study of practitioners
Background: A number of protected learning time schemes have been set up in primary care across the United Kingdom but there has been little published evidence of their impact on processes of care. We undertook a qualitative study to investigate the perceptions of practitioners
involved in a specific educational intervention in diabetes as part of a protected learning time scheme for primary health care teams, relating to changing processes of diabetes care in general practice.
Methods: We undertook semistructured interviews of key informants from a sample of practices stratified according to the extent they had changed behaviour in prescribing of ramipril and diabetes care more generally, following a specific educational intervention in Lincolnshire, United Kingdom. Interviews sought information on facilitators and barriers to change in organisational behaviour for
the care of diabetes.
Results: An interprofessional protected learning time scheme event was perceived by some but not all participants as bringing about changes in processes for diabetes care. Participants cited examples of change introduced partly as a result of the educational session. This included using ACE
inhibitors as first line for patients with diabetes who developed hypertension, increased use of aspirin, switching patients to glitazones, and conversion to insulin either directly or by referral to secondary care. Other reported factors for change, unrelated to the educational intervention, included financially driven performance targets, research evidence and national guidance. Facilitators for change linked to the educational session were peer support and teamworking supported by audit and comparative feedback.
Conclusion: This study has shown how a protected learning time scheme, using interprofessional learning, local opinion leaders and early implementers as change agents may have influenced changes in systems of diabetes care in selected practices but also how other confounding factors
played an important part in changes that occurred in practice
Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture
peer-reviewedPartitioning of starter bacteria and enzyme activities was investigated at different stages of Cheddar cheese manufacture using three exogenous commercial enzyme preparations added to milk or at salting. The enzyme preparations used were: Accelase AM317, Accelase AHC50, Accelerzyme CPG. Flow cytometric analysis indicated that AHC50 or AM317 consisted of permeabilised or dead cells and contained a range of enzyme activities. The CPG preparation contained only carboxypeptidase activity. Approximately 90% of starter bacteria cells partitioned with the curd at whey drainage. However, key enzyme activities partitioned with the bulk whey in the range of 22%–90%. An increased level of enzyme partitioning with the curd was observed for AHC50 which was added at salting, indicating that the mode of addition influenced partitioning. These findings suggest that further scope exists to optimise both bacterial and exogenous enzyme incorporation into cheese curd to accelerate ripening.Department of Agriculture, Food and the Marin
The effect of stellar-mass black holes on the structural evolution of massive star clusters
We present the results of realistic N-body modelling of massive star clusters
in the Magellanic Clouds, aimed at investigating a dynamical origin for the
radius-age trend observed in these systems. We find that stellar-mass black
holes, formed in the supernova explosions of the most massive cluster stars,
can constitute a dynamically important population. If a significant number of
black holes are retained (here we assume complete retention), these objects
rapidly form a dense core where interactions are common, resulting in the
scattering of black holes into the cluster halo, and the ejection of black
holes from the cluster. These two processes heat the stellar component,
resulting in prolonged core expansion of a magnitude matching the observations.
Significant core evolution is also observed in Magellanic Cloud clusters at
early times. We find that this does not result from the action of black holes,
but can be reproduced by the effects of mass-loss due to rapid stellar
evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl
Energy absorption by "sparse" systems: beyond linear response theory
The analysis of the response to driving in the case of weakly chaotic or
weakly interacting systems should go beyond linear response theory. Due to the
"sparsity" of the perturbation matrix, a resistor network picture of
transitions between energy levels is essential. The Kubo formula is modified,
replacing the "algebraic" average over the squared matrix elements by a
"resistor network" average. Consequently the response becomes semi-linear
rather than linear. Some novel results have been obtained in the context of two
prototype problems: the heating rate of particles in Billiards with vibrating
walls; and the Ohmic Joule conductance of mesoscopic rings driven by
electromotive force. Respectively, the obtained results are contrasted with the
"Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT
conference (Prague, 2011). Ref correcte
Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B-stearothermophilus
DNA gyrase B (GyrB) from B. stearothermophilus has been crystallized in the presence of the non-hydrolyzable ATP analogue, 5'-adenylpl-beta-gamma-imidodiphosphate (ADPNP), by the dialysis method. A complete native data set to 3.7 Angstrom has been collected from crystals which belonged to the cubic space group I23 with unit-cell dimension a = 250.6 Angstrom. Self-rotation function analysis indicates the position of a molecular twofold axis. Low-resolution data sets of a thimerosal and a selenomethionine derivative have also been analysed. The heavy-atom positions are consistent with one dimer in the asymmetric unit
Collective versus single-particle effects in the optical spectra of finite electronic quantum systems
We study optical spectra of finite electronic quantum systems at frequencies
smaller than the plasma frequency using a quasi-classical approach. This
approach includes collective effects and enables us to analyze how the nature
of the (single-particle) electron dynamics influences the optical spectra in
finite electronic quantum systems. We derive an analytical expression for the
low-frequency absorption coefficient of electro-magnetic radiation in a finite
quantum system with ballistic electron dynamics and specular reflection at the
boundaries: a two-dimensional electron gas confined to a strip of width a (the
approach can be applied to systems of any shape and electron dynamics --
diffusive or ballistic, regular or irregular motion). By comparing with results
of numerical computations using the random-phase approximation we show that our
analytical approach provides a qualitative and quantitative understanding of
the optical spectrum.Comment: 4 pages, 3 figure
Magnetic Dipole Absorption of Radiation in Small Conducting Particles
We give a theoretical treatment of magnetic dipole absorption of
electromagnetic radiation in small conducting particles, at photon energies
which are large compared to the single particle level spacing, and small
compared to the plasma frequency. We discuss both diffusive and ballistic
electron dynamics for particles of arbitrary shape.
The conductivity becomes non-local when the frequency is smaller than the
frequency \omega_c characterising the transit of electrons from one side of the
particle to the other, but in the diffusive case \omega_c plays no role in
determining the absorption coefficient. In the ballistic case, the absorption
coefficient is proportional to \omega^2 for \omega << \omega_c, but is a
decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure
- …
