

TITLE: Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture

AUTHOR(S): I.A. Doolan, A.B. Nongonierma, K.N. Kilcawley, M.G. Wilkinson

This article is provided by the author(s) and Teagasc T-Stór in accordance with publisher policies.

Please cite the published version.

NOTICE: This is the author's version of a work that was accepted for publication *in International Dairy Journal*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *International Dairy Journal*, 34, (2014), 159 – 166. DOI : 10.1016/j.idairyj.2013.07.005

This item is made available to you under the Creative Commons Attribution-Non commercial-No Derivatives 3.0 License.

42	Partitioning of starter bacteria and added exogenous enzyme activities between
43	curd and whey during Cheddar cheese manufacture.
44	
45	I. A. Doolan ¹ , A. B. Nongonierma ² , K. N. Kilcawley ² and M. G. Wilkinson ^{1*}
46	
47	¹ Department of Life Sciences, University of Limerick, Castletroy, Limerick, Ireland
48	² Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
49	
50	
51	
52	
53	
54	
55	
56	
57	*Corresponding Author. Mailing address: Department of Life Sciences, University
58	of Limerick, Castletroy, Limerick, Ireland.
59	Phone: +353 (0) 61 213440. Fax: +353 (0) 61 331490.
60	E-mail: Martin.Wilkinson@ul.ie
61	

62 Abstract

63 Partitioning of starter bacteria and enzyme activities were investigated at different 64 stages of Cheddar cheese manufacture using three exogenous commercial enzyme 65 preparations added to milk or at salting. These enzymes included: Accelase AM317, 66 Accelase AHC50, Accelerzyme CPG. Flow cytometric analysis indicated that 67 AHC50 or AM317 consisted of permeabilized or dead cells and contained a range of 68 enzyme activities. The CPG preparation only contained carboxypeptidase activity. 69 Approximately 90% of the starter bacteria cells partitioned with the curd at whey 70 drainage. _However, key enzyme activities partitioned with the bulk whey in the range of 22% to 90%. An increased level of enzyme partitioning with the curd was 71 72 observed for AHC50 which was added at salting indicating the mode of addition 73 influenced partitioning._ These findings suggest that further scope exists to optimize 74 both bacterial and exogenous enzyme incorporation into cheese curd to accelerate 75 cheese ripening.

77 **1. Introduction**

78 During Cheddar cheese manufacture starter lactococci are added to the milk for 79 acidification and flavour development. The starter microflora of Cheddar contributes 80 to proteolysis through the action of cell-envelope proteinases (CEP) and released 81 intracellular peptidases. Other agents contributing to proteolysis include: residual 82 plasmin and chymosin activities, non-starter lactic acid bacteria (NSLAB) and 83 exogenous proteinase preparations (McSweeney, 2004). As proteolysis is a rate-84 limiting step in ripening it is important to maximise the contribution of the various 85 proteolytic agents to positively influence flavour and texture development. In the case 86 of starter lactococci, it is important to incorporate the maximal number of cells within 87 the curd in order to provide the necessary balance of enzymes required for flavour 88 development (Sheehan, O'Cuinn, FitzGerald, & Wilkinson, 2006). In Cheddar cheese 89 manufacture, whey is separated from the curd. The pH of the curd at whey drainage 90 has a significant role in determining compositional factors such as calcium content 91 and retained chymosin activity. At this point in the manufacturing process a 92 partitioning of the starter microflora between the solid curd and the liquid bulk whey 93 also occurs. Despite the importance of this step in determining the degree of cell 94 incorporation, published data is generally limited to direct plate counts (Bergamini, 95 Hynes, Quiberoni, Suarez, & Zalazar, 2005; Dawson & Feagan, 1957; Jeanson, et al., 96 2011; Romeih, Moe, & Skeie, 2012). More recently, emerging technologies such as 97 flow cytometry (FCM) have been used to gain an insight into various microbial sub-98 populations of live, permeabilized and dead cells in cheese during ripening (Doolan & 99 Wilkinson, 2009; Kilcawley, Nongonierma, Hannon, Doolan, & Wilkinson, 2012; 100 Sheehan, O'Loughlin, O'Cuinn, FitzGerald, & Wilkinson, 2005). Hence it would 101 therefore be useful to utilise this technique to augment direct plate count data in any

102	new partitioning studies conducted during Cheddar cheese manufacture Acceleration
103	of ripening time and/or flavour modification in Cheddar cheese has been undertaken
104	in a number of studies involving addition of exogenous proteolytic preparations either
105	with cheesemilk or at the salting stage (El Soda & Pandian, 1991; Hannon, et al.,
106	2003; Kailasapathy & Lam, 2005; Madkor, Tong, & El Soda, 2000; Wilkinson,
107	Guinee, O'Callaghan, & Fox, 1992). A key factor in accelerating proteolysis is
108	ensuring maximum incorporation of starter lactococci and added exogenous enzymes
109	into the curd on the day of manufacture. In the case of coagulant added to milk for
110	cheese manufacture estimated losses in the whey at drainage are of the order 85-94%
111	(Bansal, Fox, & McSweeney, 2007; Garnot, Molle, & Piot, 1987; Holmes, Duersch,
112	& Ernstrom, 1977). Holmes, et al. (1977) reported distribution of milk clotting
113	enzymes as; 83% in bulk whey and 17% in bulk curd while after overnight curd
114	pressing only 6% of the original activity remained. However, such detailed studies
115	are lacking in the case of added exogenous proteinases for accelerated ripeningThis
116	information would be of benefit to cheese manufacturers to better understand the
117	degree of enzyme incorporation that occurs when enzymes are added with milk or to
118	curd at salting. The objectives of this study were to investigate the partitioning of
119	starter lactococci during normal cheese manufacture and added key activities in
120	exogenous commercial enzyme preparations added to cheese milk or at salting.
121	
122	2. Material and methods
123	2.1. Cheese making strains and cheese manufacture

124 Control or experimental cheeses were manufactured in triplicate as described by
125 Kilcawley, et al. (2012). In each trial, control cheeses or those with added exogenous
126 enzyme preparations were rotated into different vats on each day of cheesemaking to

5

128	avoid any possible contribution from vat-related factors. Accelase AM317 (Danisco,	
129	Dange-Saint-Romain, France) and Accelerzyme CPG (DSM Food Specialties,	
130	B.V,Delft, The Netherlands) were added to cheese milk while Accelase AHC50	
131	(Danisco) was added with the salt as described by Kilcawley et al., (2012).	
132	At the following points during manufacture cheeses were sampled for microbiology,	
133	flow cytometry (FCM), enzymology and proteolysis: cheesemilk after inoculation	
134	(A1), bulk whey at drainage (B1), bulk curd at drainage (B2), whey after salting (C1),	
135	curd after salting (C2) and whey after pressing (D1). Parameters also monitored	
136	during manufacture included curd yield and total production time as an average of the	
137	three trials.	
138		
139	2.2. Microbiological analysis	
140	L-M17 agar was used to determine the plate counts of starter culture during	
141	manufacture of the cheeses (Terzaghi & Sandine, 1975). Milk or whey samples were	
142	analysed by directly diluting with maximum recovery diluent (MRD) while curd	
143	samples were prepared by diluting 1/10 (w/v) with sterile tri-sodium citrate (2% w/v)	
144	and homogenized for 5 min using a stomacher (Seward Medical, London, UK).	
145	Microbiological analysis was carried out in duplicate at each sampling point and L-	
146	M17 agar plates were incubated at 30°C for 3 days.	
147		
148	2.3. Activities in exogenous proteinase preparations prior to cheese manufacture	
149	2.3.1. Azocasein activity	
150	General endoproteinase activity in the commercial enzyme preparations was	
151	determined using an azocasein assay (Kilcawley, Wilkinson, & Fox, 2002). The	
152	enzyme preparations were appropriately diluted in 0.05 M phosphate buffer pH 7.0,	

153	on a volume basis (v/v) for CPG, and on a weight basis (w/v) for both AM317 and	
154	AHC50. Each assay was performed in quadruplicate. Activity was expressed as the	
155	change in absorbance.min ⁻¹ .mg ⁻¹ protein under the assay conditions.	
156		
157	2.3.2. Peptidase activities	
158	Commercial enzyme preparations were analysed for a range of peptidase activities	
159	using different 7-amino-4-methyl coumarin (AMC) substrates (Table 2) at pH 7.0	
160	(0.05 M Tris-HCl) or pH 5.2 (0.05 M citrate phosphate buffer) by modifications of the	
161	methods described by Habibi-Najafi and Lee (1994), Kilcawley, et al. (2002) and	
162	Kilcawley, et al. (2012). The release of AMC was calculated by reference to the	
163	standard curve where the fluorescence of the sample was converted to nmol of AMC.	
164	Activity was expressed as nmol min ⁻¹ .mg ⁻¹ protein.	
165		
166	2.3.3. Esterase activity	
167	Esterase activity was measured in triplicate at pH 7.0 in 50 mM phosphate buffer at	
168	pH 5.0 in a 0.1 M trisodium citrate buffer using <i>p</i> -nitrophenyl butyrate as described	
169	by Hickey, Kilcawley, Beresford, Sheehan & Wilkinson (2006). A unit (U) of	
170	activity was defined as the amount of enzyme that released 1 mM of <i>p</i> -nitrophenol	
171	min ⁻¹ .mg ⁻¹ protein under the assay conditions.	
172		
173	2.3.4. Lipase activity	
174	Lipase activity was measured according to the method of Stead (1983) with the	
175	following modifications: a volume of 180 μL of sample was used and 3 mL of either	
176	0.1 M Tris-HCl, pH 8.0 or a 0.1 M trisodium citrate buffer, pH 5.0. The substrate	
177	consisted of 300 μ L of a 16.6 mM solution of 4-methylumbelliferyl oleate (Sigma	

179	Aldrich). The samples were incubated at 37°C and fluorescence was measured over a
180	30 min period at an excitation and emission wavelength of 325 and 450 nm,
181	respectively using a Varian Cary Eclipse with Pelletier (Varian, JVA Analytical Ltd.),
182	With each sample, a blank consisting of 0.1 M Tris-HCl at pH 8.0 was used instead of
183	the sample to take account of any background fluorescence. A standard curve
184	(R^2 =0.991) was generated in the range 0 to 20 mM 4-methylumbelliferone (the
185	primary product of the enzymatic reaction) prepared in the same manner as the 4-
186	methylumbelliferyl oleate solution. Activity was expressed in units, where one unit
187	(U) equalled the activity required to produce 1 pM of 4-methylumbelliferone $.s^{-1}.mg^{-1}$
188	protein under the assay conditions.
189	
190	2.3.5. Carboxypeptidase activity (Alanine substrate)
191	Carboxypeptidase was determined using a modification of the method of (Doi,
192	Shibata, & Matoba, 1981) where alanine (Ala) was released from the substrate Z-Phe-
193	Ala (Bachem, Feinchemikalien, Bubendorf, Switzerland). Alanine released formed a
194	complex with cadmium-ninhydrin with an absorbance maximum at 506 nm. An
195	increase in absorbance was quantified from a standard curve produced using
196	concentrations of alanine (in the range 0.1, 0.2, 0.5, 0.8, 1.0 to 2.0 mM; R ² =0.997)
197	added to a test mixture of cadmium-ninhydrin. Absorbance at 506 nm was detected
198	using a Varian Cary Bio 100 spectrophotometer (JVA Analytical Ltd).
199	Carboxypeptidase activity was expressed as mM of Ala released. min ⁻¹ .mg ⁻¹ protein
200	and was determined at pH 5.0 (0.1 M trisodium citrate buffer) or pH 7.0 (0.05 M Tris-
201	HCl).
202	
203	2.3.6. Carboxypeptidase activity (Leucine substrate).

204 Carboxypeptidase activity was measured at pH 3.2 and pH 5.0 (0.1 M trisodium

205 citrate buffer) and pH 7.0 (0.05 M Tris-HCl) using a modification of the method of

206 Hurley, O'Driscoll, Kelly, and McSweeney (1999) as described by Kilcawley, et al.

207 (2012), Carboxypeptidase activity was expressed as nM of heptapeptide degraded.

 $208 \text{ min}^{-1} \text{ .mg}^{-1}$ protein under the assay conditions.

209

210 **2.4.** Enzyme activities in the bulk whey and curd during cheese manufacture

211 2.4.1. Preparation of the curd extracts and whey samples

212 Curd extracts were analysed during manufacture for various enzyme activities. Fresh

213 curd (20 g) collected on the day of production was mixed with 40 mL of 0.05 M

214 potassium phosphate buffer at pH 7.0 in a sterile stomacher bag. The sample was

215 homogenised in a Stomacher (IUL masticator, Lennox Laboratory Supplies Ltd,

216 Dublin, Ireland) for 5 min or until completely homogenous. A 10 mL aliquot of the

217 mixture was centrifuged at 4°C for 10 min at 10,000 g (Sorvall 5U centrifuge,

218 Unitech, Dublin, Ireland). Then 1 mL of the resultant supernatant was added to an

219 eppendorf tube and centrifuged at 13,000 g for 5 min (Eppendorf 5417C, VWR

220 International, Dublin, Ireland). The final supernatant was diluted as required and

subsequently assayed for various enzyme activities described above. Whey samples

222 were directly diluted using the appropriate buffer for the particular enzyme assay. All

enzyme assays were carried out in triplicate for each cheese trial on the three different

days of manufacture.

225 In the control cheese, Pep X or Pep N activities were monitored at all six sampling

226 points (A1, B1, B2, C1, C2 and D1) while all other enzyme activities were determined

- 227 in the bulk whey and bulk curd (B1 and B2) only. In experimental cheeses, enzyme
- 228 activities were monitored in the whey or curds after the addition of the exogenous

enzymes. For cheeses made with added AM317 or CPG, enzyme activities were
monitored in the bulk curd and bulk whey at drainage (B1 and B2, respectively). In
the case of cheeses with added AHC50 this preparation was added at salting and
consequently activities were monitored in the salted curd and salted whey (C1 and C2,
respectively).

236 2.4.2. Enzyme activities in curd extracts and whey samples on day of manufacture 237 Enzyme activities present in the curd and whey samples were measured as per the 238 methods described in section 2.3. In order to determine the partitioning of these 239 enzymatic activities to the curd and whey respectively, the total volumes of the bulk 240 curd, bulk whey, salted curd and salted whey were weighed (kg) and activities present 241 in each sample was determined as a percentage of total activity. The total enzyme 242 activity in the curd and whey in each cheese was calculated using the average 243 volumes of curd and whey weighed on each day of manufacture. These are detailed 244 in Table 1.

245

246 **2.5.** Flow Cytometry of curd and whey samples during cheese manufacture

Prior to cytometric analysis, whey or milk samples were diluted appropriately using
0.05 M potassium phosphate buffer pH 7.0 and immediately stained and analysed as
described by Kilcawley, et al. (2012).

250

251 **2.6. Free amino acid analysis**

Individual free amino acids (FAA) were determined on 24% TCA filtrates prepared
directly from the bulk whey or from a pH 4.6 water soluble nitrogen fraction of the
bulk curd as described by (Kuchroo & Fox, 1982). Duplicate samples were analysed

using a Jeol JLC-500/V Amino Acid Analyzer (Jeol Ltd, Garden City, Herts, UK)
fitted with a Jeol sodium high performance cation exchange column. <u>Results were</u>
expressed as µg .g⁻¹ cheese or whey.

259

260 2.7. Statistical analysis

Presentation of data was carried out using Microsoft® Excel. For the determination
of the accelerated ripening preparations enzyme activities, the experimental design
was a 3×2 factorial design, enzyme×pH. A 2 way ANOVA followed by a Student
Newman-Keuls post-hoc test (*P*<0.05) was carried out with SPSS (version 9, SPSS
Inc., Chicago, IL, USA). For the determination of the enzyme activities during cheese
production, 3 accelerated ripening preparations and one control were studied,

therefore a one way ANOVA was used for statistical analysis, followed by a Student

268 Newman-Keuls post-hoc test (*P*<0.05) with SPSS. Two-way ANOVA analysis with

269 the Tukey's significance difference test (P < 0.05) was used for the analysis of FCM

270 data. _R (2011) software was used for statistical analysis (Development Core Team,

271 2011).

272

273 3. Results and Discussion

274 **3.1. Enzyme activities of the accelerated ripening preparations**

275 Peptidase activities detected in the three exogenous commercial preparations are

276 presented in Table 1. Of the twelve substrates examined, substantial Pep X activity

277 was detected in both AM317 and AHC50 preparations and was higher at pH 7.0

- 278 compared with pH 5.2 for both preparations. In contrast, Accelerzyme CPG
- 279 contained very little activity against the range of substrates tested, except for Pep R
- 280 which was detectable only at pH 5.2 (Table 1). Both AHC50 and AM317

281	preparations had similar levels of activity towards the Z-Phe-Ala substrate which were		
282	significantly higher ($P < 0.05$) at pH 7.0 (Table 2). The CPG preparation displayed		
283	little activity against the Z-Phe-Ala substrate and could only release low levels of	_	Deleted:
284	alanine from this peptide. However, CPG displayed the highest activity of the three		
285	enzyme preparations against the heptapeptide substrate Pro-Thr-Glu-Phe-[NO ₂ -Phe]-		
286	Arg-Leu, which may indicate carboxypeptidase activity (Table 2). This activity was		
287	~10 fold greater for the CPG preparation compared with AM317 or AHC50 at pH 3.2		
288	and 5.0, but was similar to the other two commercial enzyme preparations at pH 7.0		
289	(Table 2).		
290	Overall, proteolytic activities for each preparation towards the azocasein substrate at		
291	pH 5.0 or 7.0 were always significantly higher ($P < 0.05$) for AM317 than the AHC50		
292	preparation, with no activity detected for the CPG preparation (Table 3). For all three		
293	enzyme preparations, esterase activity was significantly higher in both AM317 and		
294	AHC50 preparations. This activity was also significantly higher ($P < 0.05$) at pH 5.0		
295	compared with pH 7.0 (Table 2). Lipase activity was significantly higher ($P < 0.05$) in		
296	AM317 compared with the two other preparations and, in contrast to esterase activity,		
297	was highest at pH 5.0 for the latter enzyme preparation (Table 2). These results		
298	highlight a major difference in the range of enzyme activities contained in the CPG		
299	preparation in comparison to AM317 or AHC50 preparations,		Deleted:
300			
301	3.2. Cheese manufacturing		
302	Cheeses manufactured with added AM317 had coagulation times of 36.33 min		
303	compared with control cheeses (40.00 min), while cheeses made with CPG or AHC50		
304	had somewhat extended coagulation times of 43.67 and 46.67 min, respectively.		Deleted:
305	Total curd yields for all cheeses ranged from 47.3 to 49.5 kg per 454 L of cheese		Deleted:

milk. Overall, Control or AM317 cheeses had the shortest manufacturing times, but

311 all cheeses were manufactured within times (from addition of starter until pre-press)

312 ranging from 328 to 343 min (data not shown), which were not statistically significant

313 (*P*≥0.05).

314

310

315 **3.3. Microbiological analysis**

316 The viable starter counts on L-M17 agar for all cheeses at each sampling point over 317 triplicate manufacturing trials were calculated. Overall, an increase in cell numbers 318 was observed in the bulk curd samples for all cheeses corresponding to cell growth 319 and pH development. For all cheeses an increase in starter populations was observed 320 between the bulk curd after drainage and the salted curd. The only statistically 321 significant difference (P < 0.05) in LAB starter counts was found in the bulk curd 322 samples at whey drainage where higher populations were noted for cheese with added 323 AM317 compared with cheese with added CPG preparation. 324 The calculated percentages of starter bacteria partitioning between the bulk curd and 325 bulk whey and subsequently between the salted curd and the salted whey are shown in 326 Fig. 1. The calculated percentage retention of starter bacteria in the bulk curd for 327 Control or AHC50 cheeses was 94.7% or 91.9%, respectively. In contrast, retention 328 of starter bacteria in AM317 or CPG-treated cheeses was 88.8% or 81.5%, 329 respectively (Fig. 1a). This finding appears in general agreement with that reported 330 by (Jeanson, et al., 2011) who stated that~90%, of starter cells preferentially partition 331 with the curd. These workers also highlighted the importance of final curd numbers 332 in terms of spatial distribution and possible influences on diffusion of solutes and 333 enzymes to and from starter cells during ripening. It has been postulated by Laloy, 334 Vuillemard, El Soda, and Simard (1996) that bacteria may partition with the curd

Deleted: c

337	based on an affinity for the milk fat globule membrane, At salting an average ~99%		Deleted:
338	retention of starter was calculated for all cheeses with ~1% losses of cells in the salted		
339	whey (Fig. 1b).		
340			
341	3.4. Pep X and Pep N activities during cheese production		
342	Pep X and Pep N activities of AHC50-treated cheese were considered to be similar to		
343	the control as this preparation was not added to the cheesemilk. Activity of Pep X or		
344	Pep N detected in Control samples may have originated from early autolysis of starter		Deleted: c
345	culture during cheese production (Table 33). For all cheeses, Pep X activity was		
346	significantly ($P < 0.05$) higher than Pep N activity in the bulk curd and bulk whey.		
347	Additionally, Pep X activity in the bulk curd was not significantly different ($P \ge 0.05$)		
348	between any of the cheeses and the calculated partitioning to the bulk whey was		
349	similar (~67%) for all cheeses. For Pep N activity, 21 or 35% partitioned with the		
350	bulk whey for AM317 or CPG treated cheeses, respectively. The differences in		
351	enzyme partitioning to the bulk whey observed between Pep X and Pep N may be due		
352	to differences in enzyme stability, conformation, affinity with the cheese matrix and		
353	accessibility of required co-factors,		Deleted:
354	No significant differences ($P \ge 0.05$) in Pep N activity were observed in bulk whey or		
355	bulk curd between any of the cheeses (Table 3). At salting, partitioning of Pep X and		
356	Pep N to the whey in the Control cheese was relatively low (<2%, Table 3). In the		Deleted: c
357	cheeses with added AHC50, the levels of Pep X in the salted curd was significantly	٦٢	Jeleted:
358	higher ($P < 0.05$) when compared with control cheeses. In AHC50-treated cheeses,		
359	95.1 or 90.3% of Pep X and Pep N partitioned with the salted curd, respectively.		
360	Partitioning of these activities with the salted whey/ pressed whey were lower for		
361	AHC50 cheese compared with AM317 or CPG-treated cheeses. Overall this data		

367 supports the general idea that addition of enzyme preparation with salt can reduce 368 partitioning of enzyme with the whey (Wilkinson & Kilcawley, 2005). The higher 369 Pep X levels seen in the salted whey of AHC50 cheeses may be attributed to the mode 370 of addition of the AHC50 preparation which was added to the salt. 371 372 3.5. Other enzyme activities (carboxypeptidase, esterase and lipase) in the whey 373 and curd 374 In all cheeses a comparison of other enzyme activities monitored indicated no 375 significant difference ($P \ge 0.05$) in activities partitioning with the bulk curd or bulk 376 whey (Table 4). Significantly higher lipase activity was found in the bulk curd 377 compared to the bulk whey (Table 5). Carboxypeptidase and esterase activities were 378 not significantly higher ($P \ge 0.05$) in the bulk whey compared to the bulk curd, except 379 for carboxypeptidase activity against Leucine substrate in AM317-treated cheeses 380 (Table 4). Lipase activities displayed the opposite trend with higher activity 381 partitioning with the bulk curd (P<0.05). Partitioning of carboxypeptidases and 382 esterases activities with bulk whey was relatively high ranging from 67.3 to 90.5 %. 383 These values are in accordance with Wilkinson and Kilcawley (2005) who reviewed 384 the area and noted that some studies reported partitioning of enzymes to the bulk whey at drainage may be as high as 90%. Partitioning of lipase activity with the whey 385 386 was lower with values ranging from 44.2 to 49.7% 387 388 3.6 Flow cytometric analysis of starter cells on day of manufacture 389 Dot plots were generated at all sampling points for each of the cheeses and data were

- 390 expressed as a percentage of live, permeabilized or dead cells (Fig. 2). Significant
- 391 differences ($P \ge 0.05$) in live cells were not evident between cheeses at any sampling

393	point (Table 5). However, in the AHC50-treated cheeses levels of permeabilized or	
394	dead cells were significantly different ($P < 0.05$) in the salted whey and pressed whey	
395	in comparison to the other cheeses. Previous FCM data found that the AHC50	
396	preparation contained primarily permeabilized/dead cells (Kilcawley, et al., 2012).	
397	These cells may have been generated following an attenuation treatment as the	
398	cytometric profiles were similar to those obtained following CTAB treatment of	Deleted:
399	lactococcal strains observed by Doolan and Wilkinson (2009) and Sheehan, et al.	
400	(2005). Thus, it appears that most of the permeabilized/dead cells in the AHC50	
401	preparation were lost to the salted and pressed whey immediately after addition. It is	Deleted:
402	possible that in the case of AHC 50, the original cells may have been exposed to	
403	treatments which may have removed cell surface components associated with	Deleted:
404	electrostatic attraction and incorporation into the curd matrix. Indeed, Crow, Gopal,	
405	and Wicken (1995) noted that treatments which altered the cell surface components of	
406	a range of starter strains but which did not cause autolysis resulted in differing	
407	degrees of hydrophobicity and phage adsorption. While these authors did not link	
408	these effects with cell partitioning in cheese manufacture, it is reasonable to postulate	
409	that the type of permeabilising treatments used for AHC 50 manufacture may have	
410	also impacted on cell surface architecture and partitioning properties Doolan and	
411	Wilkinson (2009) noted that significant treatment-related effects on cell permeability	
412	and intracellular enzyme release, howover in the case of AHC 50 this information is	
413	not available. Therefore while an industrial process may have been optimised to	
414	enhance cell permeability and intracellular enzyme release it may have adversely	
415	affected cell surface properties and consequent retention during cheese manufacture,	 Deleted:
416		
417	3.7. Free amino acid analysis	 Deleted: 1

423	Total FAA levels were significantly ($P < 0.05$) higher in the bulk whey of the AM317-
424	treated cheeses compared to the other cheeses and was more than double that of the
425	other cheeses (Fig. 3). The individual FAA profile of the bulk whey of the AM317
426	cheeses was also very different to that of the other cheeses. However, Pep X and Pep
427	N activities in the bulk whey of the AM317-treated cheeses were not significantly
428	$(P \ge 0.05)$ higher than in the other cheeses. Hence differences in total FAA levels may
429	be due to higher levels of proteolytic activity contained in the AM317 preparation
430	(Table 2) and which may have a different substrate specificity compared with
431	chymosin. Such enzymatic differences could account for differences in FFA levels
432	generated and in individual FAA profiles, As the CPG preparation did not contain
433	any proteinase activity and the AHC50 preparation was added with the salt, levels of
434	FAA in the bulk whey from both these cheeses should not differ from each other in
435	the bulk whey. Although the additional losses of FAA in the bulk whey of AM317
436	cheeses did not impact on yield it may impact on the potential downstream processing
437	applications for this whey. The extent of partitioning with the bulk whey found for
438	commercial enzymes represents an adverse economic outcome in terms of cost
439	benefits to cheese manufacturers. Therefore further optimisation of methods for the
440	addition of exogenous enzyme preparations in cheese manufacture are still required to
441	achieve the most cost effective outcomes.
442	
443	4.0 Conclusion
444	In this study, cheese was produced using commercial enzyme preparations marketed

as accelerated ripening agents. Pre-screening of these preparations prior to their use
identified CPG as a relatively pure preparation with minimal enzymatic side enzyme
activities present. However, both the AM317 and AHC50 preparations contained a

Deleted:

450	range of enzymatic activities and previous studies by Kilcawley, et al. (2012) have	
451	shown that these preparations consist primarily of permeabilized and dead bacterial	
452	cells. During Cheddar cheese production, approximately 90% of the starter cells	
453	partitioned with the bulk curd after whey drainage. Significant partitioning of enzyme	
454	activities with the bulk whey was observed ranging from 22 to 90% of the added	
455	initial levels. Lowest partitioning with the whey was noted for Pep N activity and	
456	highest for esterase and carboxypeptidase activities. In the cheese where the enzyme	
457	preparation was added with the salt (AHC50), partitioning of Pep X and Pep N	
458	activity to the salted curd was 95.2 and 90.3%, respectively, when the volumes of	
459	salted whey and salted curd were taken into account. Overall it would appear that the	_
460	addition of exogenous enzyme preparations with the salt rather than to the cheesemilk	
461	may significantly improve their retention. Free amino acid analysis of bulk whey	
462	samples revealed high levels of FAA in the bulk whey from cheese treated with	
463	AM317, which may impact on the suitability of such whey for certain applications.	
464	This study has provided useful information on partitioning of both starter bacteria and	_
465	added exogenous enzymes in the curd and whey during manufacture of potential	
466	interest to enzyme manufacturers and cheese producers alike.	
467		
468	Acknowledgement	
469	Funding for this research was provided under the Food Institutional Research Measure	
470	(FIRM) by the Irish Department Fisheries and Food as part of the National	
471	Development Plan (04/R&D/C/238). The authors would also like to thank both	
472	Danisco for providing the Accelase AHC50 and AM317 and DSM for providing	
473	Accelerzyme CPG and the starter LL50A.	

Deleted:

77 78	trials.						
	Substrate	Peptidase	Activity (nmol min ⁻¹ mL ⁻¹) Mean±SD				
			AM317	Accelerzyme CPG	AHC50		

Table 1. Peptidase activities of the commercial accelerated ripening systems at pH 5.2 and 7.0. Values presented are the mean±SD of triplicate triple 477 478

Substrate	repudase	Activity (millor mill mill) Mean±SD					
		AM317		Accelerz	yme CPG	AHC	250
		рН 7.0	рН 5.2	рН 7.0	рН 5.2	рН 7.0	рН 5.2
Pep N	H-Lys-AMC	8.4 ± 0.0	0.0±0.0	0.1 ± 0.1	0.2 ± 0.0	5.6 ± 4.9	0.0 ± 0.0
Pep X	H-Gly-Pro-AMC	940.1 ± 79.5	587.33±44.86	0.0 ± 0.0	0.3 ± 0.0	1598.9±164.2	669.5 ± 85.1
Pep A (1)	H-Asp-AMC	5.6 ± 4.7	0.0±0.0	0.1 ± 0.0	0.1 ± 0.0	2.8 ± 4.9	6.4 ± 11.2
Pep A (2)	H-Glu-AMC	20.8 ± 6.2	0.0±0.0	0.0 ± 0.0	0.3 ± 0.0	10.5 ± 3.6	0.0 ± 0.0
Pep M	H-Met-AMC	0.0 ± 0.0	0.0±0.0	0.3 ± 0.0	0.15±0.03	0.0±0.0	0.0 ± 0.0
Pep R	Z-Pro-Arg-AMC-HCl	7.7 ± 7.3	0.0±0.0	0.2 ± 0.0	25.9 ± 4.5	7.7 ± 7.3	0.0 ± 0.0
Pep Q	Z-Gly-Pro-AMC	14.6 ± 6.2	0.0±0.0	0.0 ± 0.0	0.3 ± 0.0	0.0±0.0	15.4 ± 3.4
Pep I	H-Pro-AMC	0.0 ± 0.0	0.0±0.0	0.1 ± 0.0	0.1 ± 0.1	9.7±8.5	12.9 ± 12.6

480

Table 2. Carboxypeptidase, Esterase, Lipase and Azocasein activities of the commercial accelerated ripening systems at different pH values.

483 Values presented are the mean±SD of triplicate trials.

	Mean activity ±SD						
pН	AM317	Accelerzyme CPG	AHC50				
5.0	251.0±21.7 ^b	$14.7{\pm}1.4^{a}$	235.3±11.3 ^b				
7.0	531.1±4.5 ^c	19.9 ± 0.5^{a}	$521.8 \pm 31.6^{\circ}$				
3.2	4.0±0.1 ^c	39.7±0.1 ^e	1.6±0.1 ^a				
5.0	3.1±0.1 ^b	39.7±0.1 ^e	$1.9{\pm}0.4^{a}$				
7.0	4.8 ± 0.1^{d}	$5.7{\pm}0.8^{ m d}$	5.4 ± 0.1^{d}				
5.0	1949.7±10.7 ^d	$209.5 \pm 19.7^{\circ}$	1914.8±32.7 ^d				
7.0	122.7±8.3 ^b	$24.6{\pm}1.7^{\mathrm{a}}$	50.4 ± 8.6^{a}				
5.0	44.0±13.5 ^c	0.3 ± 0.1^{a}	1.2 ± 0.2^{a}				
8.0	26.7 ± 3.8^{b}	$0.3{\pm}0.1^{a}$	$1.4{\pm}0.2^{a}$				
5.0	0.8 ± 0.1^{b}	nd	0.3±0.1 ^a				
7.0	2.8 ± 0.1^{d}	nd	1.2 ± 0.1^{c}				
	pH 5.0 7.0 3.2 5.0 7.0 5.0 7.0 5.0 8.0 5.0 7.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c } \hline Mean activity \pm SD \\ \hline PH & AM317 & Accelerzyme CPG \\ \hline 5.0 & 251.0\pm21.7^b & 14.7\pm1.4^a \\ \hline 7.0 & 531.1\pm4.5^c & 19.9\pm0.5^a \\ \hline 3.2 & 4.0\pm0.1^c & 39.7\pm0.1^e \\ \hline 5.0 & 3.1\pm0.1^b & 39.7\pm0.1^e \\ \hline 7.0 & 4.8\pm0.1^d & 5.7\pm0.8^d \\ \hline 5.0 & 1949.7\pm10.7^d & 209.5\pm19.7^c \\ \hline 7.0 & 122.7\pm8.3^b & 24.6\pm1.7^a \\ \hline 5.0 & 44.0\pm13.5^c & 0.3\pm0.1^a \\ \hline 8.0 & 26.7\pm3.8^b & 0.3\pm0.1^a \\ \hline 5.0 & 0.8\pm0.1^b & nd \\ \hline 7.0 & 2.8\pm0.1^d & nd \\ \hline \end{tabular}$				

 nd not detected

Formatted: French (France)

Formatted: English (Ireland)

- 491 Table 3. Pep X and Pep N activities (per mL of whey or per g of curd) during production (±SD of triplicate trials). Bulk whey (B1), bulk curd
- 492 (B2), salted whey (C1) and salted curd (C2)

	Pep N activity		Pep X activity			Pep N activity			Pep X activity			
	B1*	B2*	Partition	B1*	B2*	Partition	C1*	C2*	Partition	C1*	C2*	Partition
			to the			to the			to the			to the
			whey%			whey%			whey%			whey%
Control	0.00±0.0 ^a	0.14±0.089 ^a	0	0.43±0.03 ^a	1.68±0.36 ^a	68.2	0.63±0.06 ^a	0.25±0.08 ^a	1.48	0.45±0.08 ^a	3.53±1.00 ^a	0.16
AM317	0.00±0.0 ^a	0.09±0.11 ^a	21.4	0.46±0.09 ^a	1.92±0.83 ^a	67.4	nd	nd	nd	nd	nd	nd
CPG	0.00±0.0 ^a	0.06±0.06 ^a	35.3	0.42 ± 0.10^{a}	1.75±1.04 ^a	66.8	nd	nd	nd	nd	nd	nd
AHC50	nd	nd	nd	nd	nd	nd	4.60 ± 4.75^{a}	0.53±0.46	9.7	1.76 ± 1.33^{a}	1.28±0.39 ^b	4.9

493

494 Values presented are the mean±SD of triplicate trials

495 n.d.: not determined

496 *In the same column, figures with the same letter are not significantly different ($P \ge 0.05$)

497 Abbreviations: Pep N, aminopeptidase N; Pep X, Post-prolyl di-peptidyl aminopeptidase X; B1, Bulk whey; B2, Bulk Curd, Activity; Enzyme activity; Partition to the whey, % enzyme partitioned to the whey.

499 **Table 4**. Carboxypeptidase, chymosin, esterase, and lipase activity (±SD of triplicate trials) in the bulk whey (B1) and bulk curd (B2) of the

500 control, CPG and AM317 cheeses. Enzyme activities are expressed per mL of whey or per g of curd.

	Carboxypeptidase (Ala substrate)			Carboxypeptidase (Leu substrate)			Esterase			Lipase		
	Activity (mM/min)		Partition to the	Activity (nM/min)		Partition to the	Activity (nM/min)		Partition to the	Activity (pM/s)		Partition to the
	B1*	B2*	whey (%)	B1*	B2*	whey (%)	B1*	B2*	whey (%)	B1*	B2*	whey (%)
Control	0.06 ± 0.01^{a}	$0.04{\pm}0.01^{a}$	90.5	$7.6{\pm}2.0^{a}$	$14.8{\pm}13.4^{a,b}$	81.2	100.6 ± 39.4^{a}	138.0±136.9ª	67.2	$65.6{\pm}13.8^{a}$	$559.5 \pm 434.6^{\rm b}$	49.7
CPG	0.06 ± 0.02^{a}	0.05 ± 0.03^{a}	84.1	n.d.	n.d.	n.d.	$127.4{\pm}19.3^{a}$	150.8±128.5 ^a	70.3	64.9 ± 7.8^{a}	592.5±191.2 ^b	48.1
AM317	0.08±0.02 ^a	0.06±0.03 ^a	86.2	9.1±2.9 ^a	21.3±1.0 ^b	77.8	n.d.	n.d.	n.d.	65.2 ± 5.8^{a}	669.1±278.5 ^b	44.2

501

502 Values presented are the mean±SD of triplicate trials

503 n.d.: not determined

*Within the same enzyme activity, figures with the same letter are not significantly different ($P \ge 0.05$)

Abbreviations: Ala substrate, Z-Phe-Ala; Leu substrate, Pro-Thr-Glu-Phe-[NO -Phe]-Arg-Leu; Activity, enzyme activity; B1, Bulk Whey; B2, Bulk Curd; Partition to the whey, % enzyme partitioned to the whey.

506 Table 5. Percentage of cells detected by Flow Cytometry for each of the regions: live, permeabilized, or dead for control or experimental 507 cheeses at each of the sampling points: After inoculation (A1), Bulk Whey (B1), Bulk Curd (B2), Salted whey (C1), Salted curd (C2) and 508 pressed whey (D1).

509

Region	Cheese	A1*	B1 *	B2*	C1*	C2*	D1*
Live	CTL	26.6 ± 7.7^{a}	28.0±13.2 ^a	17.2±6.3 ^a	29.2 ± 7.8^{a}	17.3±7.1 ^a	37.3±19.7 ^a
	AM317	22.0±12.1 a	23.5±11.6 ^a	24.6±15.5 ^a	33.5±11.8 ^a	14.1±6.2 ^a	28.1±13.6 ^a
	CPG	22.2±13.6 ^a	21.3±12.7 ^a	15.2±5.2 ^a	34.5±22.2 ^a	13.5±5.4 ^a	35.3±22.4 ^a
	AHC50	18.3±8.0 ^a	23.9±13.6 ^a	16.0±5.1 ^a	7.1±3.1 ^b	15.1 ± 7.6^{a}	11.3±6.4 ^a
Permeabilized	CTL	26.0 ± 0.6^{a}	12.9±1.4 ^a	23.9±5.6 ^a	14.5 ± 1.6^{a}	21.2 ± 5.8^{a}	12.7 ± 1.0^{a}
	AM317	26.3 ± 7.8^{a}	13.2±3.9 ^a	37.1±16.1 ^a	14.1±2.3 ^a	24.2±9.9 ^a	14.3 ± 7.0^{a}
	CPG	22.4±2.5 ^a	14.3±2.8 ^a	29.8±11.2 ^a	12.7±1.3 ^a	33.0±15.6 ^a	12.9±3.0 ^a
	AHC50	25.4 ± 8.0^{a}	13.9±0.9 ^a	31.2±7.8 ^a	5.8±2.2 ^b	31.0±5.6 ^a	5.9±1.3 ^b
Dead	CTL	44.5 ± 8.6^{a}	63.6±12.1 ^a	58.5±9.0 ^a	53.9±9.0 ^a	62.1±11.8 ^a	55.6±17.9 ^a
	AM317	62.3±15.2 ^a	49.1±20.20 ^a	45.6±30.4 ^a	52.9±10.5 ^a	62.2 ± 12.8^{a}	57.5±13.0 ^a
	CPG	54.1 ± 10.9^{a}	64.8 ± 8.9^{a}	54.8±13.5 ^a	50.6±19.1 ^a	52.2 ± 18.4^{a}	48.7±17.9 ^a
	AHC50	46.6 ± 20.4^{a}	63.8±10.0 ^a	53.9±10.7 ^a	80.2 ± 4.70^{b}	53.9 ± 10.0^{a}	84.4 ± 5.4^{b}

510

511 Values presented are the mean±SD of triplicate trials

*Within the same column, figures with the same letter are not significantly different ($P \ge 0.05$)

513 References

- Bansal, N., Fox, P. F., & McSweeney, P. L. H. (2007). Factors affecting the retention
 of rennet in cheese curd. *Journal of Agricultural and Food Chemistry*, 55,
 9219-9225.
- 517 Bergamini, C. V., Hynes, E. R., Quiberoni, A., Suarez, V. B., & Zalazar, C. A.
 518 (2005). Probiotic bacteria as adjunct starters: influence of the addition
 519 methodology on their survival in a semi-hard Argentinean cheese. *Food*520 *Research International, 38*, 597-604.
- 521 Crow, V. L., Gopal, P. K., & Wicken, A. J. (1995). Cell surface differences of
 522 lactococcal strains. *International Dairy Journal*, 5, 45-68.
- 523 Dawson, D. J., & Feagan, J. T. (1957). 673. Bacteriology of cheddar cheese: A study
 524 of starter organisms in manufacture and maturing. *Journal of Dairy Research*,
 525 24, 210-224.
- 526 Development Core Team, R. (2011). R: A language and environment for statistical
 527 computing. R foundation for Statistical Computing, Vienna, Austria. ISBN 3 528 900051-07-0. In.
- 529 Doi, E., Shibata, D., & Matoba, T. (1981). Modified colorimetric ninhydrin methods
 530 for peptidase assay. *Analytical Biochemistry*, *118*, 173-184.
- Doolan, I. A., & Wilkinson, M. G. (2009). Comparison of the effects of various
 attenuation methods on cell permeability and accessibility of intracellular
 enzymes in *Lactococcus lactis* strains. *International Dairy Journal, 19*, 215221.
- El Soda, M., & Pandian, S. (1991). Recent Developments in Accelerated Cheese
 Ripening. *Journal of Dairy Science*, 74, 2317-2335.
- 537 Garnot, P., Molle, D., & Piot, M. (1987). Influence of pH, type of enzyme and
 538 ultrafiltration on the retention of milk clotting enzymes in Camembert cheese.
 539 *Journal of Dairy Research*, 54, 315-320.
- Habibi-Najafi, M. B., & Lee, B. H. (1994). Proline-Specific peptidases of
 Lactobacillus casei subspecies. *Journal of Dairy Science*, 77, 385-392.
- Hannon, J. A., Wilkinson, M. G., Delahunty, C. M., Wallace, J. M., Morrissey, P. A.,
 & Beresford, T. P. (2003). Use of autolytic starter systems to accelerate the
 ripening of Cheddar cheese. *International Dairy Journal*, *13*, 313-323.
- Hickey, D. K., Kilcawley, K. N., Beresford, T. P., Sheehan, E. M., & Wilkinson, M.
 G. (2006). The influence of a seasonal milk supply on the biochemical and sensory properties of Cheddar cheese. *International Dairy Journal*, *16*, 679-690.
- Holmes, D. G., Duersch, J. W., & Ernstrom, C. A. (1977). Distribution of milk
 clotting enzymes between curd and whey and their survival during cheddar
 cheese making. *Journal of Dairy Science*, 60, 862-869.
- Hurley, M. J., O'Driscoll, B. M., Kelly, A. L., & McSweeney, P. L. H. (1999). Novel
 assay for the determination of residual coagulant activity in cheese. *International Dairy Journal*, 9, 553-558.
- Jeanson, S., Chadoeuf, J., Madec, M. N., Aly, S., Floury, J., Brocklehurst, T. F., &
 Lortal, S. (2011). Spatial distribution of bacterial colonies in a model cheese. *Appl Environ Microbiol*, 77, 1493-1500.
- Kailasapathy, K., & Lam, S. H. (2005). Application of encapsulated enzymes to
 accelerate cheese ripening. *International Dairy Journal*, *15*, 929-939.

- Kilcawley, K. N., Wilkinson, M. G., & Fox, P. F. (2002). Determination of key
 enzyme activities in commercial peptidase and lipase preparations from
 microbial or animal sources. *Enzyme and Microbial Technology*, *31*, 310-320.
- Kilcawley, K. N., Nongonierma, A. B., Hannon, J. A., Doolan, I. A., & Wilkinson, M.
 G. (2012). Evaluation of commercial enzyme systems to accelerate Cheddar
 cheese ripening. *International Dairy Journal*, 26, 50-57.
- Kuchroo, C. N., & Fox, P. F. (1982). Soluble nitrogen in cheese:comparison of
 extraction procedures. *Milchwissenschaft*, *37*, 331-335.
- Laloy, E., Vuillemard, J.-C., El Soda, M., & Simard, R. E. (1996). Influence of the fat
 content of Cheddar cheese on retention and localization of starters. *International Dairy Journal*, 6, 729-740.
- 571 Madkor, S. A., Tong, P. S., & El Soda, M. (2000). Ripening of Cheddar Cheese with
 572 Added Attenuated Adjunct Cultures of Lactobacilli. *Journal of Dairy Science*,
 573 83, 1684-1691.
- McSweeney, P. L. H. (2004). Biochemistry of cheese ripening. *International Journal of Dairy Technology*, *57*, 127-144.
- Romeih, E. A., Moe, K. M., & Skeie, S. (2012). The influence of fat globule
 membrane material on the microstructure of low-fat Cheddar cheese. *International Dairy Journal*, 26, 66-72.
- Sheehan, A., O'Loughlin, C., O'Cuinn, G., FitzGerald, R. J., & Wilkinson, M. G.
 (2005). Cheddar cheese cooking temperature induces differential lactococcal
 cell permeabilization and autolytic responses as detected by flow cytometry:
 implications for intracellular enzyme accessibility. *Journal of Applied Microbiology*, *99*, 1007-1018.
- Sheehan, A., O'Cuinn, G., FitzGerald, R. J., & Wilkinson, M. G. (2006). Proteolytic
 enzyme activities in Cheddar cheese juice made using lactococcal starters of
 differing autolytic properties. *Journal of Applied Microbiology*, *100*, 893-901.
- 587 Stead, D. (1983). A fluorimetric method for the determination of Pseudomonas
- fluorescens AR11 lipase in milk. *Journal of Dairy Research*, 50, 491-502.
 Terzaghi, B. E., & Sandine, W. E. (1975). Improved medium for lactic streptococci
- 590 and their bacteriophages. *Appl. Environ. Microbiol.*, 29, 807-813.
- Wilkinson, M. G., Guinee, T. P., O'Callaghan, D. M., & Fox, P. F. (1992). Effects of
 commercial enzymes on proteolysis and ripening in Cheddar cheese. *Lait*, 72,
 449-459.
- Wilkinson, M. G., & Kilcawley, K. N. (2005). Mechanisms of incorporation and
 release of enzymes into cheese during ripening. *International Dairy Journal*,
 15, 817-830.
- 597 598