8,478 research outputs found
Semi-Automated SVG Programming via Direct Manipulation
Direct manipulation interfaces provide intuitive and interactive features to
a broad range of users, but they often exhibit two limitations: the built-in
features cannot possibly cover all use cases, and the internal representation
of the content is not readily exposed. We believe that if direct manipulation
interfaces were to (a) use general-purpose programs as the representation
format, and (b) expose those programs to the user, then experts could customize
these systems in powerful new ways and non-experts could enjoy some of the
benefits of programmable systems.
In recent work, we presented a prototype SVG editor called Sketch-n-Sketch
that offered a step towards this vision. In that system, the user wrote a
program in a general-purpose lambda-calculus to generate a graphic design and
could then directly manipulate the output to indirectly change design
parameters (i.e. constant literals) in the program in real-time during the
manipulation. Unfortunately, the burden of programming the desired
relationships rested entirely on the user.
In this paper, we design and implement new features for Sketch-n-Sketch that
assist in the programming process itself. Like typical direct manipulation
systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing
shapes, relating shapes to each other, and grouping shapes together. Unlike
typical systems, however, each tool carries out the user's intention by
transforming their general-purpose program. This novel, semi-automated
programming workflow allows the user to rapidly create high-level, reusable
abstractions in the program while at the same time retaining direct
manipulation capabilities. In future work, our approach may be extended with
more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST
2016
Temporal Analysis of Activity Patterns of Editors in Collaborative Mapping Project of OpenStreetMap
In the recent years Wikis have become an attractive platform for social
studies of the human behaviour. Containing millions records of edits across the
globe, collaborative systems such as Wikipedia have allowed researchers to gain
a better understanding of editors participation and their activity patterns.
However, contributions made to Geo-wikis_wiki-based collaborative mapping
projects_ differ from systems such as Wikipedia in a fundamental way due to
spatial dimension of the content that limits the contributors to a set of those
who posses local knowledge about a specific area and therefore cross-platform
studies and comparisons are required to build a comprehensive image of online
open collaboration phenomena. In this work, we study the temporal behavioural
pattern of OpenStreetMap editors, a successful example of geo-wiki, for two
European capital cities. We categorise different type of temporal patterns and
report on the historical trend within a period of 7 years of the project age.
We also draw a comparison with the previously observed editing activity
patterns of Wikipedia.Comment: Submitte
Oseledets' Splitting of Standard-like Maps
For the class of differentiable maps of the plane and, in particular, for
standard-like maps (McMillan form), a simple relation is shown between the
directions of the local invariant manifolds of a generic point and its
contribution to the finite-time Lyapunov exponents (FTLE) of the associated
orbit. By computing also the point-wise curvature of the manifolds, we produce
a comparative study between local Lyapunov exponent, manifold's curvature and
splitting angle between stable/unstable manifolds. Interestingly, the analysis
of the Chirikov-Taylor standard map suggests that the positive contributions to
the FTLE average mostly come from points of the orbit where the structure of
the manifolds is locally hyperbolic: where the manifolds are flat and
transversal, the one-step exponent is predominantly positive and large; this
behaviour is intended in a purely statistical sense, since it exhibits large
deviations. Such phenomenon can be understood by analytic arguments which, as a
by-product, also suggest an explicit way to point-wise approximate the
splitting.Comment: 17 pages, 11 figure
The area of horizons and the trapped region
This paper considers some fundamental questions concerning marginally trapped
surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation.
An area estimate for outermost marginally trapped surfaces is proved. The proof
makes use of an existence result for marginal surfaces, in the presence of
barriers, curvature estimates, together with a novel surgery construction for
marginal surfaces. These results are applied to characterize the boundary of
the trapped region.Comment: 44 pages, v3: small changes in presentatio
Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data
A remark on an overdetermined problem in Riemannian Geometry
Let be a Riemannian manifold with a distinguished point and
assume that the geodesic distance from is an isoparametric function.
Let be a bounded domain, with , and consider
the problem in with on ,
where is the -Laplacian of . We prove that if the normal
derivative of along the boundary of is a
function of satisfying suitable conditions, then must be a
geodesic ball. In particular, our result applies to open balls of
equipped with a rotationally symmetric metric of the form
, where is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a
special volume dedicated to the conference "Geometric Properties for
Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in
Palinuro in May 201
Instability of ion kinetic waves in a weakly ionized plasma
The fundamental higher-order Landau plasma modes are known to be generally
heavily damped. We show that these modes for the ion component in a weakly
ionized plasma can be substantially modified by ion-neutral collisions and a dc
electric field driving ion flow so that some of them can become unstable. This
instability is expected to naturally occur in presheaths of gas discharges at
sufficiently small pressures and thus affect sheaths and discharge structures.Comment: Published in Phys. Rev. E, see
http://link.aps.org/doi/10.1103/PhysRevE.85.02641
Selfsimilar solutions in a sector for a quasilinear parabolic equation
We study a two-point free boundary problem in a sector for a quasilinear
parabolic equation. The boundary conditions are assumed to be spatially and
temporally "self-similar" in a special way. We prove the existence, uniqueness
and asymptotic stability of an expanding solution which is self-similar at
discrete times. We also study the existence and uniqueness of a shrinking
solution which is self-similar at discrete times.Comment: 23 page
Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system
Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans
Broad ion energy distributions in helicon wave-coupled helium plasma
Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE, in the wave-coupled mode are large compared to the time-averaged ion energy, 〈E〉. On the axis (r = 0), ΔE/ 〈E〉 ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE/ 〈E〉 ∼ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.United States. Department of Energy (Award DESC00-02060)United States. Department of Energy (Award DE-FC02-99ER54512
- …
