1,262 research outputs found

    Optical diode based on the chirality of guided photons

    Get PDF
    Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optical networks

    Analysis of vertebral chemistry to assess stock structure in a deep-sea shark, Etmopterus spinax

    Get PDF
    First published online: October 27, 2016Deep-sea sharks play a valuable ecological role helping maintain food web balance, yet they are vulnerable to commercial fishing because of slow growth rates and low reproductive capacity. Overfishing of sharks can heavily impact marine ecosystems and the fisheries these support. Knowledge of stock structure is integral to sustainable management of fisheries. The present study analysed vertebral chemistry using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to assay concentrations of 7Li, 23Na, 24Mg, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 85Rb, 88Sr, 138Ba and 208Pb to assess stock structure in a deep-sea shark, Etmopterus spinax, in Norwegian and French waters. Few studies have applied this technique to elasmobranch vertebrae and the present study represents its first application to a deep-sea shark. Three stocks were identified at the regional scale off western Norway, southern Norway, and France. At finer spatial scales there was evidence of strong population mixing. Overall, the general pattern of stock structure outlined herein provides some indication of the spatial scales at which stocks should be viewed as distinct fisheries management units. The identification of an effective multi-element signature for distinguishing E. spinax stocks utilizing Sr, Ba, Mg, Zn and Pb and the methodological groundwork laid in the present study could also expedite future research into stock structure for E. spinax and deep-sea elasmobranchs more generally.Matthew N. McMillan, Christopher Izzo, Claudia Junge, Ole Thomas Albert, Armelle Jung and Bronwyn M. Gillander

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Особенности и закономерности изменения восстановлености углей башкирского яруса Западного Донбасса

    Get PDF
    В статье приведена детальная петрографическая характеристика углей башкирского яруса Западного Донбасса. Проведена классификация по восстановлености в соответствии с петрографическими типами. Установлены стратиграфические и площадные закономерности изменения степени восстановлености.У статті наведена детальна петрографічна характеристика вугілля башкирського ярусу Західного Донбасу. Проведена класифікація відновленості, згідно з петрографічними типами. Встановлені стратиграфічні та просторові закономірності зміни ступеню відновленості.The article gives detailed petrographic characteristics of coal of Bashkirian formation of Western Donbas. The classifications for recovery in accordance with petrographic types are given. The stratigraphic and areal patterns of change in the degree of recovery are established

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure

    contact.engineering -- Create, analyze and publish digital surface twins from topography measurements across many scales

    Full text link
    The optimization of surface finish to improve performance occurs largely through trial and error, despite significant advancements in the relevant science. There are three central challenges that account for this disconnect: (1) the challenge of integration of many different types of measurement for the same surface to capture the multi-scale nature of roughness; (2) the technical complexity of implementing spectral analysis methods, and of applying mechanical or numerical models to describe surface performance; (3) a lack of consistency between researchers and industries in how surfaces are measured, quantified, and communicated. Here we present a freely-available internet-based application which attempts to overcome all three challenges. First, the application enables the user to upload many different topography measurements taken from a single surface, including using different techniques, and then integrates all of them together to create a digital surface twin. Second, the application calculates many of the commonly used topography metrics, such as root-mean-square parameters, power spectral density (PSD), and autocorrelation function (ACF), as well as implementing analytical and numerical calculations, such as boundary element modeling (BEM) for elastic and plastic deformation. Third, the application serves as a repository for users to securely store surfaces, and if they choose, to share these with collaborators or even publish them (with a digital object identifier) for all to access. The primary goal of this application is to enable researchers and manufacturers to quickly and easily apply cutting-edge tools for the characterization and properties-modeling of real-world surfaces. An additional goal is to advance the use of open-science principles in surface engineering by providing a FAIR database where researchers can choose to publish surface measurements for all to use.Comment: 19 pages, 6 figure
    corecore