116 research outputs found

    Site Description for the University of Nebraska's Sandhills Agricultural Laboratory

    Get PDF
    The Sandhills Agricultural Laboratory is operated by the University of Nebraska. The laboratory is located in the south-central part of the Nebraska Sandhills near Tryon, Nebraska (41 deg. 37' N; 100 deg. 50' W). The laboratory is surrounded on the west and south by native rangeland vegetation, on the south by a large field of corn irrigated by a center pivot, and on the east by wheat stubble. This site is appropriate for moisture stress studies since rainfall is almost always inadequate to meet evaporative demands of agricultural crops during most of the growing season and the sandy soils (Valentine fine sand) at the site do not store large quantities of water. Various levels of water stress are achieved through irrigation from solid set sprinklers

    Application of remote sensing in estimating evapotranspiration in the Platte river basin

    Get PDF
    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes

    Evaluation of AIS Data for Agronomic and Rangeland Vegetation: Preliminary Results for August 1984 Flight over Nebraska Sandhills Agricultural Laboratory

    Get PDF
    Since 1978 scientists from the Center for Agricultural Meteorology and Climatology at the University of Nebraska have been conducting research at the Sandhills Agricultural Laboratory on the effects of water stress on crop growth, development and yield using remote sensing techniques. We have been working to develop techniques, both remote and ground-based, to monitor water stress, phenological development, leaf area, phytomass production and grain yields of corn, soybeans and sorghum. Because of the sandy soils and relatively low rainfall at the site it is an excellent location to study water stress without the necessity of installing expensive rainout shelters. The primary objectives of research with the airborne imaging spectrometer (AIS) data collected during an August 1984 flight over the Sandhills Agricultural Laboratory are to evaluate the potential of using AIS to: (1) discriminate crop type; (2) to detect subtle architectural differences that exist among different cultivars or hybrids of agronomic crops; (3) to detect and quantify, if possible, the level of water stress imposed on the crops; and (4) to evaluate leaf area and biomass differences for different crops

    Comparison of Measured and Modeled Radiation, Heat, and Water Vapor Fluxes: Fife Pilot Study (CAMaC Progress Report 87-7)

    Get PDF
    Mémoire de fin d'étude du diplôme de conservateur d'Elydia Barret, promotion 22 portant sur les humanités numériques, publié par les Collections numériques de l’Enssib en janvier 2014 : http://www.enssib.fr/bibliotheque-numerique/notices/64711-quel-role-pour-les-bibliotheques-dans-les-humanites-numeriques Les humanités numériques sont nées au tournant du XXIe siècle avec l’arrivée de l’internet qui ouvre un nouveau chapitre dans l’histoire des rapports des technologies numériques et des scien..

    Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    Get PDF
    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning

    Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes

    Get PDF
    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing
    • …
    corecore