1,283 research outputs found

    Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    Full text link
    Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30%30 \% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.Comment: 22 pages, 8 figure

    Thermodynamics of the quantum spin-S XXZ chain

    Full text link
    The thermodynamics of the spin-SS anisotropic quantum XXZXXZ chain with arbitrary value of SS and unitary norm, in the high-temperature regime, is reported. The single-ion anisotropy term and the interaction with an external magnetic field in the zz-direction are taken into account. We obtain, for arbitrary value of SS, the β\beta-expansion of the Helmholtz free energy of the model up to order β6\beta^6 and show that it actually depends on 1S(S+1)\frac{1}{S(S+1)}. Its classical limit is obtained by simply taking SS\to \infty. At h=0h=0 and D=0, our high temperature expansion of the classical model coincides with Joyce's exact solution\cite{joyce_prl}. We study, in the high temperature region, some thermodynamic quantities such as the specific heat and the magnetic susceptibility as functions of spin and verify for which values of SS those thermodynamic functions behave classically. Their finite temperature behavior is inferred from interpolation of their high- and low-temperature behavior, and shown to be in good agreement with numerical results. The finite temperature behavior is shown for higher values of spin.Comment: 18 pages, 14 figure

    X-ray monitoring of optical novae in M31 from July 2004 to February 2005

    Get PDF
    Optical novae have recently been identified as the major class of supersoft X-ray sources in M31 based on ROSAT and early XMM-Newton and Chandra observations. This paper reports on a search for X-ray counterparts of optical novae in M31 based on archival Chandra HRC-I and ACIS-I as well as XMM-Newton observations of the galaxy center region obtained from July 2004 to February 2005. We systematically determine X-ray brightness or upper limit for counterparts of all known optical novae with outbursts between November 2003 to the end of the X-ray coverage. In addition, we determine the X-ray brightnesses for counterparts of four novae with earlier outbursts. For comparison with the X-ray data we created a catalogue of optical novae in M31 based on our own nova search programs and on all novae reported in the literature. We collected all known properties and named the novae consistently following the CBAT scheme. We detect eleven out of 34 novae within a year after the optical outburst in X-rays. While for eleven novae we detect the end of the supersoft source phase, seven novae are still bright more than 1200, 1600, 1950, 2650, 3100, 3370 and 3380 d after outburst. One nova is detected to turn on 50 d, another 200 d after outburst. Three novae unexpectedly showed short X-ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The X-ray emission of several of the novae can be characterized as supersoft from hardness ratios and/or X-ray spectra or by comparing HRC-I count rates with ACIS-I count rates or upper limits. The number of detected optical novae at supersoft X-rays is much higher than previously estimated (>30%). We use the X-ray light curves to estimate the burned masses of the White Dwarf and of the ejecta

    Status of the PANDA barrel DIRC

    Get PDF
    The PANDA experiment at the future Facility for Antiproton and Ion Research in Europe GmbH (FAIR) at GSI, Darmstadt will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Hadronic PID in the barrel region of the PANDA detector will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. The design is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. Detailed Monte Carlo simulation studies were performed for DIRC designs based on narrow bars or wide plates with a variety of focusing solutions. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution and a maximum likelihood approach was used to determine the π/K separation. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN. This article describes the status of the design and R&D for the PANDA Barrel DIRC detector, with a focus on the performance of different DIRC designs in simulation and particle beams

    Nonlinear Integral Equations for Thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz Model

    Full text link
    We propose a system of nonlinear integral equations (NLIE) which describes the thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz model. These NLIE correspond to a trigonometric analogue of our previous result (cond-mat/0212280), and contain only r unknown functions. In particular, they reduce to Takahashi's NLIE for the XXZ spin chain (cond-mat/0010486) if r=1. We also calculate the high temperature expansion of the free energy. In particular for r=1 case, we have succeeded to derive the coefficients of order O((\frac{J}{T})^{99}).Comment: 19 pages, 4 figures, only the Mathematica file for the high temperature expansion is replaced, to appear in J.Phys.Soc.Jpn.Vol.74 No.3 (2005

    High-resolution measurement of the time-modulated orbital electron capture and of the β+\beta^+ decay of hydrogen-like 142^{142}Pm60+^{60+} ions

    Full text link
    The periodic time modulations, found recently in the two-body orbital electron-capture (EC) decay of both, hydrogen-like 140^{140}Pr58+^{58+} and 142^{142}Pm60+^{60+} ions, with periods near to 7s and amplitudes of about 20%, were re-investigated for the case of 142^{142}Pm60+^{60+} by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period T=7.11(11)T = 7.11(11)s, in accordance with a modulation period T=7.12(11)T = 7.12(11) s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to aR=0.107(24)a_R = 0.107(24) and aP=0.134(27)a_P = 0.134(27) for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors {\it exactly} our previous findings of modulation periods near to 7s, though with {\it distinctly smaller} amplitudes. Also the three-body β+\beta^+ decays have been analyzed. For a supposed modulation period near to 7s we found an amplitude a=0.027(27)a = 0.027(27), compatible with a=0a = 0 and in agreement with the preliminary result a=0.030(30)a = 0.030(30) of our previous experiment. These observations could point at weak interaction as origin of the observed 7s-modulation of the EC decay. Furthermore, the data suggest that interference terms occur in the two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys. Lett. B (2013) onlin

    Measurement and analysis of needle penetration forces in industrial high-speed sewing machine

    Get PDF
    The industrial manufacturing of sewn products has always been one of the critical processes of the textile chain concerning quality assurance. Assuring the appropriate set-up and operation of all the machines, and thus the final seam quality, is a very complex task. Traditionally, this task is accomplished through empirical methods, with the machine setting and quality control relying on the skills of operators and technicians. This work presents an approach to a more knowledge-based and integrated process planning and control. A system was developed to measure and analyze the most important mechanical effects occurring during high-speed sewing. The paper will focus mainly on the measurement and evaluation of needle penetration and withdrawal force. After an overview of the system, the most important experimental results obtained in a series of experiments will be described

    Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR

    Full text link
    We present electron spin resonance data of Ti3+^{3+} (3d1d^1) ions in single crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is predominantly occupied and owing to the occurrence of orbital order a linear spin chain forms along the crystallographic b axis. This result corroborates recent theoretical LDA+U calculations of the band structure. The temperature dependence of the parameters of the resonance signal suggests a strong coupling between spin and lattice degrees of freedom and gives evidence for a transition to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com

    Magnetic properties of (VO)_2P_2O_7: two-plane structure and spin-phonon interactions

    Full text link
    Detailed experiments on single-crystal (VO)_2P_2O_7 continue to reveal new and unexpected features. We show that a model composed of two, independent planes of spin chains with frustrated magnetic coupling is consistent with nuclear magnetic resonance and inelastic neutron scattering measurements. The pivotal role of PO_4 groups in mediating intrachain exchange interactions explains both the presence of two chain types and their extreme sensitivity to certain lattice vibrations, which results in the strong magnetoelastic coupling observed by light scattering. We compute the respective modifications of the spin and phonon dynamics due to this coupling, and illustrate their observable consequences on the phonon frequencies, magnon dispersions, static susceptibility and specific heat.Comment: 10 pages, 9 figure
    corecore