386 research outputs found

    Self-adapting motion cueing algorithm based on a kinematics reference model

    Get PDF
    Due to a number of advantages over traditional development methods, the importance of dynamic driving simulators in automotive research and development has grown continuously in recent years. Motion simulation via motion cueing algorithms contributes significantly to the driving experience and provides the driver with valuable information about the current driving dynamics. The adaptation and tuning process of these algorithms can be difficult and timeconsuming tasks. It needs to be repeated after changes to the vehicle or driving scenario. This paper discusses and presents an adaptive or rather self-adapting motion cueing algorithm (MCA) concept. The approach is based on the integration of a kinematic reference model to dynamically and adaptively adjust the motion behavior dynamically and adaptively. This concept allows to reduce the parameter tuning effort drastically in long term, since the algorithm can adapt itself to different conditions such as vehicle type, driving situation, or driver behavior. In the following, the proposed algorithm structure is explained and illustrated. The advantages of the proposed MCA are demonstrated by an experimental comparison with a classical algorithm. Thereby it is shown how a self-adaptation of the algorithm can proceed and how to avoid violation of workspace boundaries

    Indication of direct acoustical cochlea stimulation in comparison to cochlear implants

    Get PDF
    AbstractThe new implantable hearing system Codacsℱ was designed to close the treatment gap between active middle ear implants and cochlear implants in cases of severe-to-profound mixed hearing loss. The Codacsℱ actuator is attached to conventional stapes prosthesis during the implantation and thereby provides acoustical stimulation through a stapedotomy to the cochlea. Cochlear implants (CIs) on the other hand are an established treatment option for profoundly deaf patients including mixed hearing losses that are possible candidates for the Codacsℱ.In this retrospective study, we compared the clinical outcome of 25 patients with the Codacsℱ (≄3 month post-activation) to 54 CI patients (two years post-activation) with comparable pre-operative bone conduction (BC) thresholds that were potential candidates for both categories of devices. The word recognition score (Freiburg monosyllables test) in quiet was significantly (p < 0.05) better in the Codacsℱ than in the corresponding CI patients for average pre-operative bone conduction below 60 dB HL and equal in patients with a pre-operative BC PTA between 60 and 70 dB HL. Speech in noise intelligibility (HSM sentences test at +10 dB SNR) was significantly (p < 0.001) better in Codacsℱ (80% median) than in CI patients (25% median) in all tested groups.Our results indicate for patients with sufficient cochlear reserve that speech intelligibility in noise with the Codacsℱ hearing implant is significantly better than with a CI. Further, results in Codacsℱ were better predictable, encouraging the extension of the indication to patients with less cochlear reserve than reported here

    Extending teleoperated driving using a shared X-in-the-loop environment

    Get PDF
    The strong progress in modern vehicle system technology requires new methodological approaches for the development and validation of new vehicle systems. In particular, due to increasing automation, classical development methods and testing scenarios need to be evolved. Consequently, the publication focuses on an extension of teleoperated driving by the X-in-the-loop (XIL) approach. Within this framework, the classical concept based on VPN-LTE networking is analyzed and discussed at first. With this implementation, the remote control of a real vehicle is presented based on the use of a dynamic driving simulator. Especially for the development and validation of such concepts, an extension with the XIL methodology can improve this process. For this reason, the architecture of teleoperated driving is subsequently extended by networking with additional system components. The feasibility, the functionalities as well as the challenges that arise with such an extension based on the XIL methodology are shown.Within the scope of this study, the achieved transmission times for the control variables and for the video data stream are demonstrated. Based on different driving maneuvers, the achievable repeatability is discussed

    Compositional Servoing by Recombining Demonstrations

    Full text link
    Learning-based manipulation policies from image inputs often show weak task transfer capabilities. In contrast, visual servoing methods allow efficient task transfer in high-precision scenarios while requiring only a few demonstrations. In this work, we present a framework that formulates the visual servoing task as graph traversal. Our method not only extends the robustness of visual servoing, but also enables multitask capability based on a few task-specific demonstrations. We construct demonstration graphs by splitting existing demonstrations and recombining them. In order to traverse the demonstration graph in the inference case, we utilize a similarity function that helps select the best demonstration for a specific task. This enables us to compute the shortest path through the graph. Ultimately, we show that recombining demonstrations leads to higher task-respective success. We present extensive simulation and real-world experimental results that demonstrate the efficacy of our approach.Comment: http://compservo.cs.uni-freiburg.d
    • 

    corecore