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Abstract
Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal

strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge

but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanome-

ter-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the

oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influ-

ences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nano-

tube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used

frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar

nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very

sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup.
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Introduction
Over the last decade, magnetic objects of micro- and nanome-

ter size have come into focus of researchers, since they offer a

wide range of possible applications. These include magnetic

storage techniques and spintronics [1], as well as the study of

magnetic microorganisms in biology, for example for applica-

tions in hypothermia treatment [2]. A technique to investigate

such magnetic particles and samples is cantilever magnetom-

etry. The measurement setup is based on a cantilever oscil-

lating at or close to its resonance frequency, with the sample

placed at the free end of the cantilever. When an external mag-

netic field is applied to the setup, the magnetic interaction of the

sample with the field alters the resonance frequency of the can-

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
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tilever by creating a torque [3]. The resulting frequency shift

can be used as measurement signal to derive information on the

properties of the sample. In most cases the motion of the canti-

lever is detected optically, for example via laser deflection or

laser interferometry [4]. With decreasing sample size, the canti-

lever has to be adapted to compensate the weaker magnetic

interaction and, therefore, the loss in signal strength of the fre-

quency shift. This is usually achieved through geometric

changes, making the cantilever itself very small and thin.

An oscillating cantilever beam can be represented by a

harmonic oscillator model for each flexural eigenmode of the

beam [5]. Considering an external force gradient as an addition-

al spring constant Δk, the eigenfrequency of the cantilever as a

harmonic oscillator is given by:

(1)

with the spring constant k and effective mass meff of the cantile-

ver. Please note that the eigenfrequency f0 and the resonance

frequency  of a harmonic oscillator should in principle

be distinguished. They are connected by the relation

 However, it is obvious that in the limit

of small dissipation or correspondingly a high quality factor of

the cantilever these frequencies coincide well. The resonance

frequency of a beam can easily be determined from amplitude

response curves and, since all our discussions will be based on

such curves, we will be using the term resonance frequency

throughout the remainder of this publication.

For magnetometry experiments, the mass of the cantilever with

the magnetic sample remains unchanged throughout the experi-

ment, making it unnecessary to consider the influence of mass

changes on the resonance frequency of the cantilever. The mag-

netic interaction between sample and external magnetic field

acts as the additional spring constant Δk, altering the resonance

frequency of the cantilever. The frequency shift Δf induced by

these interactions can be derived from Equation 1 as:

(2)

In the case of cantilever magnetometry, Δk does not only

depend on the interaction of the magnetic moment m of the

sample with the external magnetic field H but also on the effec-

tive length of the cantilever Leff [6,7]. Furthermore, by

assuming a simple Stoner–Wohlfarth single domain particle, the

magnetic interaction is related to the anisotropy field of the

sample Ha, so Equation 2 reads:

(3)

This equation can be used as a good approximation for the iron-

filled carbon nanotube samples which are presented in this

publication. However, please note that other samples might ex-

hibit more complex magnetic configurations, as for example

multiple particles or domains, which then need a more elabo-

rate description.

From Equation 3 it is evident that small magnetic samples

require a low stiffness as well as a short length of the cantilever

which can be achieved by decreasing all of the dimensions of

the cantilever as already mentioned above. As an instructive ex-

ample to understand this, a simple cantilever with constant

rectangular cross section with the width w, the thickness t and

the length L can be considered. According to Euler–Bernoulli

beam theory, the spring constant and resonance frequency for

this kind of beam are given by  and [6]. By

combining this with Equation 3 for the frequency shift signal in

cantilever magnetometry, it can be derived that 

Therefore, a decrease of all dimensions of the rectangular canti-

lever is favorable to increase the signal strength. Please note

that while this simple derivation is only valid for cantilevers

with rectangular cross section, similar considerations can be

applied to other cantilever geometries.

However, ultrathin and small cantilevers are difficult to produce

and handle and furthermore still need a feature to allow for the

use of optical detection methods. This is usually realized by a

paddle-shaped structure positioned somewhere along the length

of the cantilever [4,8]. Still, the detection capability limits the

decrease in size. Conclusively, there are two competing condi-

tions: on the one hand, the stiffness and length of the cantilever

should be very low in order to obtain a strong signal even with

very small magnetic samples. On the other hand, detection

becomes increasingly difficult when the size of the cantilever is

reduced to dimensions on the nanoscale.

Our recently introduced sensor concept addresses these difficul-

ties by co-resonant coupling of a micro- and a nanocantilever

where the latter allows for very high sensitivity and the microm-

eter size part for an easy detection [9]. We will only briefly

review the theoretical considerations regarding the sensor

concept since it is discussed in depth elsewhere [9]. The main

focus of this publication is to demonstrate the applicability of

the concept for cantilever magnetometry by deriving magnetic

information of an iron nanowire and comparing them to the

results of other measurements. In our experiment we use a com-

mercially available silicon cantilever of micrometer dimensions
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and an iron-filled carbon nanotube (FeCNT), the latter with two

out of three dimensions on the nanometer scale and therefore

with low stiffness and low effective mass. Typical diameters of

the iron filling are (15–30) nm and the nanotube length ranges

from (15–45) μm [10,11]. The FeCNT not only features favor-

able geometric and material properties [12] but the iron filling

allows for a magnetometry measurement as well and, therefore,

for a demonstration of the functionality of our sensor. The

remainder of this publication is structured as follows: first we

will introduce the main ideas of the co-resonant sensor concept.

Next, we will discuss the fabrication of such a sensor and then

evaluate a magnetometry measurement and derive magnetic

properties of an iron nanowire in order to prove the applicabili-

ty of the concept and to indicate its potential for signal enhance-

ment in magnetometry.

Experimental
Co-resonant concept
By applying the harmonic oscillator model for both subsystems

of our sensor approach, the simple model of a coupled harmonic

oscillating system is derived as depicted in Figure 1. It consists

of a spring, a mass and a damping element for each subsystem.

Furthermore, there are an additional spring k3 and a damping el-

ement d3, modeling interactions between the coupled system

and external influences. The oscillation of the coupled system is

driven by a periodic force applied to the bigger subsystem.

Figure 1: Simple model for two coupled harmonic oscillators, each
represented by a mass (m1, m2), a sping (k1, k2) and a damping ele-
ment (d1, d2). The system is excited to oscillations by a periodic force
with the driving angular frequency ωD = 2πfD applied to the first
subsystem. Interactions between the system and external influences
are modeled by an additional spring k3 and the damping element d3.
For the described sensor setup, subsystem 1 corresponds to the canti-
lever and subsystem 2 to a FeCNT.

In our case, subsystem 1 represents the silicon cantilever and

subsystem 2 the FeCNT and, since the cantilever is the part of

the sensor that will be used for detection, we will discuss the

behaviour of the coupled system accordingly. Please note that

all the following considerations are valid for the FeCNT as

well. Theoretically, if coupled beams are each represented by a

harmonic oscillator model which is only valid for one reso-

nance mode of the beam, the amplitude response of each

subsystem should exhibit a number of resonance frequencies ac-

cording to the number of subsystems. Applied to our system it

means that two resonance peaks should occur in the amplitude

response of the subsystem representing the cantilever. However,

if the resonance frequencies of cantilever and FeCNT are far

apart, the amplitude of the second peak in the amplitude

response of the cantilever will be well below the limit of almost

every detection method. Figure 2 depicts a calculated ampli-

tude response of the cantilever based on typical values for our

system as summarized in Table 1. With the resonance frequen-

cies of the subsystem far apart, i.e., very weak interplay, the

amplitude response curve of the harmonic oscillator repre-

senting the cantilever only shows one prominent resonance

peak, coinciding well with the resonance frequency of the

uncoupled cantilever. The amplitude for the second peak caused

by the FeCNT is by several orders of magnitude smaller and

therefore not shown in Figure 2.

Figure 2: Calculated amplitude response for the cantilever (subsystem
1) with and without frequency matching between the two subsystems.
The calculation is based on typical values for cantilever and FeCNT
(see Table 1) and d3 and k3 are set to zero, assuming a system with-
out interaction.

Table 1: Properties of cantilever and FeCNT constituting the coupled
sensor.

Parameter Cantilever (1) FeCNT (2)

spring constant ki 133.8 N/m 0.0086 N/m
effective mass meff,i 6.5 · 10−12 kg 4.1 · 10−16 kg
quality factor Qi 3390 450
resonance frequency fi
before matching 723080 Hz 2082080 Hz

resonance frequency fi
after matching 723080 Hz 725610 Hz

This picture changes drastically when the resonance frequency

of the FeCNT is adjusted close to the value of the cantilever. In

that case, we observe two clear resonance peaks in the ampli-

tude response of the cantilever (Figure 2). Furthermore, due to

strong interplay between the subsystems induced by the

co-resonant frequency matching, the two resonance frequencies
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Figure 3: SEM images (a) of the fabricated sensor, (b) and (c) of the free end of the FeCNT before and after carbon deposition and (d) of the co-reso-
nant oscillation of the FeCNT.

of the coupled system are shifted compared to the resonance

frequencies of the single subsystems. We will therefore use fa

and fb for the resonance frequencies of the coupled system and

f1 and f2 for the individual resonance frequencies of cantilever

and FeCNT, respectively, in the following. Futher details on the

behaviour of a co-resonantly coupled system can be found else-

where [9], so we will only summarize the main points here:

1. A strong interplay is induced between the two subsys-

tems due to the matching of the resonance frequencies,

even for two highly asymmetric subsystems.

2. Interactions between FeCNT and an external influence

alter the oscillation of the FeCNT. Through the co-reso-

nant coupling this changes the resonance frequencies of

the coupled system and can be detected at the cantilever.

3. Small interactions result in rather large frequency shifts

due to the low stiffness, i.e., high sensitivity of the nano-

scale oscillator, and can be measured with a rather insen-

sitive cantilever.

Sensor fabrication
Based on the theoretical considerations we fabricated a magne-

tometry sensor consisting of a commercially available tipless

silicon cantilever and an iron-filled carbon nanotube. All

productions steps were carried out in a Zeiss FIB CrossBeam

1540 XB under high vacuum (≈10−5 mbar). First, the cantilever

was shortened via focused ion beam milling to increase its reso-

nance frequency. This step also increased the stiffness of the

cantilever to about 133.8 N/m (see Table 1) which is rather high

compared to typical values in cantilever magnetometry. In a

second step, an individual nanotube was picked from a forest of

FeCNTs grown by chemical vapor deposition [10] by a

Kleindiek micromanipulator and placed at the free end of the

cantilever. Electron beam-induced deposition of amorphous car-

bon on the contact point between FeCNT and cantilever ensures

a strong attachment of the nanotube. Next, amorphous carbon

was also deposited at the free end of the FeCNT to lower its

resonance frequency from above 2 MHz close to that of the can-

tilever. Throughout the process of carbon deposition, the oscil-

lation of the FeCNT was observed with SEM to ensure close

matching of the two resonance frequencies by employing a

custom-made vibration stage. When the resonance frequencies

of the subsystem are approaching each other, the resonance

frequencies of the coupled system do not coincide with them

anymore, as discussed above. In order to still measure the single

resonance frequency of each subsystem we used a tungsten tip

to hold the respective other subsystem, therefore detuning the

coupled system. Figure 3 shows the sensor and magnified

images of the free of the FeCNT end before and after frequency

matching. Furthermore, the co-resonant oscillation of the nano-

tube is depicted.

Another feature of the co-resonant coupling is the amplitude

amplification [13] of the free end of the oscillating nanotube as

it is evident in Figure 3d. The free end of the FeCNT exhibits an

amplitude of more than 2 μm, whereas the cantilever and the

other end of the FeCNT conntected to the cantilever only oscil-

late in the range of a few nanometers.

Magnetometry measurement
All magnetometry measurements were carried out in a

NanoScan AG hr-MFM at room temperature and under high

vacuum (≈10−5 mbar). The machine employs a piezo actuator

for oscillating the cantilever and a laser deflection detection

system with a sectioned photo diode to determine its oscillation.

We measured the amplitude response of the cantilever by

sweeping the excitation frequency at a constant amplitude of the

AC piezo voltage.

In order to generate a magnetic field parallel to the long axis of

the FeCNT inside the measurement chamber, we used commer-

cially available NdFeB magnets [14], positioned on a sample
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Figure 4: Sketch of measurement positions which are reached by keeping the sensor position fixed and rotating the sample plate. (1) and (2) corre-
spond to the two orientations of the magnetic field and (3) is a field-free position. The CCD camera picture on the right hand side shows the sensor
close to one of the magnets.

plate. The sensor position was fixed throughout the measure-

ment and the sample plate carrying the magnets has been

rotated in order to allow measurements with both magnetic field

directions as well as at a field-free position. Figure 4 depicts a

sketch of the setup with the measurement positions indicated

and an image generated by the CCD camera of the instrument.

Furthermore, Figure 5 shows a two-dimensional simulation of

the magnetic field obtained with the finite element software

FEMM [15]. Close to the surface of the magnet at the height,

where the measurements were carried out, the magnetic flux

density reaches values of about 460 mT in the direction of the

FeCNT’s easy axis.

In order to measure at various magnetic field values without

moving the sensor to ensure stable measurement conditions, the

distance between sensor and magnet was changed by stepwise

movement of the sample plate holding the magnet. At each step

we measured the amplitude response of the cantilever in the fre-

quency range of interest and determined the two resonance

frequencies of the coupled system. Figure 6 shows two ampli-

tude response curves as an example: one being taken at the po-

sition closest to the magnet, i.e., at a distance of about 100 μm

in a field of approximately 406 mT, and the other one at a field-

free position (see Figure 4). As can easily be seen, there is a sig-

nificant change in the resonance frequencies of the coupled

system which we attribute to the magnetic interaction between

the iron filling of the FeCNT and the magnetic field of the

NdFeB magnet.

Figure 7 depicts the measured resonance frequency shift for

each of the two peaks of the coupled system compared to the

field free measurement for various magnetic field values. We

Figure 5: Simulated magnetic field of the permanent magnet. The field
dependence on the distance to the surface of the magnet is calculated
for the black line, corresponding to the measurement height.

observe a frequency shift of several 100 Hz in high magnetic

field compared to the field free measurement for the left peak

(a) in Figure 6. The shifts are even higher for the smaller, i.e.,

the right hand side, peak but it also features a higher measure-

ment uncertainty regarding the determination of the maximum

amplitude and hence resonance frequency. Table 2 summarizes

the maximum frequency shift for both peaks and orientations of

the magnetic field. The differences in the frequency shift values

can be attributed to limited position accuracy of the magnets.

Results and Discussion
Compared to previous cantilever magnetometry experiments

with similar FeCNTs, the frequency shifts in our experiment of
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Figure 6: Amplitude response curves of the cantilever measured at the field-free position (3) according to Figure 4 and approximately 100 μm above
the surface of the magnet (position (2)). The peaks are marked with (a) and (b) for reference purposes.

Figure 7: Measured frequency shifts of both peaks (a) and (b) compared to the field free measurement for various magnetic field values.
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Table 2: Measured resonance frequencies fa/b of the coupled system
for both orientations of the magnet and corresponding frequency shift
values Δf compared to a field-free measurement. The values are given
for the highest magnetic field.

Left peak (a) Right peak (b)

fa/b field-free (720679.5 ± 10) Hz (728051.3 ± 83) Hz
Position 1
fa/b @ 406 mT (720402 ± 10) Hz (727290 ± 83) Hz
Δf (−277.5 ± 20) Hz (−761.3 ± 166) Hz
Position 2
fa/b @ −406 mT (720962 ± 10) Hz (729124 ± 83) Hz
Δf (282.5 ± 20) Hz (1072.7 ± 166) Hz

280 Hz and 1000 Hz, respectively, for the two resonance peaks

are increased by several orders of magnitude. For example,

Banerjee et al. used similar FeCNTs on sensitive cantilevers

with spring constants of about 0.2 N/m at low temperatures and

measured frequency shifts in the order of mHz [7]. It has also

been shown previously that a FeCNT oscillating in a magnetic

field without being placed onto a cantilever can indeed exhibit a

large frequency shift compared to the field-free case. However,

the detection of the oscillatory state of the small nanotube

remained a challenge as stated by Philippi et al. [16]. With our

approach of co-resonant coupling we simultaneously allow for a

very strong measurement signal and an easy detection of the

oscillatory state of the FeCNT.

After the rather qualitative analysis of our obtained data, we

now want to show the possibility to extract reliable magnetic

information from the measured frequency shifts, making our

sensor suitable for quantitative magnetic measurements.

Effective spring constant of the coupled
system
In order to derive magnetic information from the measured fre-

quency shift data, we use a relation similar to Equation 2 by

introducing effective spring constants 

(4)

and evaluate it with respect to k3 which contains the magnetic

interaction. Here fa/b and Δfa/b denote the two resonance

frequencies of the coupled system and their respective

shifts. The effective spring constants  determine the

sensitivity for each resonance peak of the coupled system and

have to be known for a quantitative analysis of the measured

data.

In order to obtain them for the given sensor geometry we will

be using an approximate formula to calculate the expected reso-

nance angular frequencies of the coupled system ωa/b = 2πfa/b

for a small interaction spring constant k3[17]:

(5)

with  = (k1 + k2)/m1 and  = (k2 + k3)/m2. Furthermore,

m1,2 denote the effective masses of the subsystems which can

easily be determined from their resonance frequencies (see

Table 1) by m1,2 = k1,2/(2πf1,2)2. Equation 5 neglects any

damping effects but this is a justified approximation since all

our measurements are carried out under high vacuum, limiting

damping to intrinsic effects due to the bending of the oscil-

lating structures [9]. This was futhermore confirmed by com-

parison between the results obtained by Equation 5 and evalu-

ating of the analytical solution of the differential equations

describing the system.

With Equation 5 we can calculate the resonance frequencies of

the coupled system for the two cases: without interaction, i.e.,

k3 = 0, and with a small interaction, k3 = 1 · 10−6 N/m, and de-

termine the resulting frequency shifts. By inserting these values

in Equation 4 and rearranging it, we are able to obtain the

values for the effective spring constants for the two resonance

peaks as:

Comparing these values to the spring constants of the single

subsystems kcant = 133.8 N/m and kCNT = 0.0086 N/m it is

obvious that the effective spring constants of the coupled

system are a mixture of the stiffnesses of the individual subsys-

tems and that they are strongly influenced by the low stiffness

of the FeCNT. Furthermore, the effective spring constants

depend on the grade of frequency matching as can be seen from

Equation 5. Closely matched resonance frequencies induce a

strong interplay between the two subsystems. Hence, any mag-

netic interaction between FeCNT and external influences can be

sensed with an effective stiffness slightly above the low spring

constant of the FeCNT (in our case approximately by a factor of

three) but be measured with a rather insensitive cantilever.

However, we do not see the full sensitivity of the FeCNT in the

measured frequency shift. Instead we observe a reduction

leading to the conclusion that the behaviour of the coupled

system can be described well by the effective spring constant

keff.
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Figure 8: Dependence of the effective spring constant of each peak  on the interaction spring constant k3. The calculations are based on the
properties of the system given in Table 1.

However, it is important to note that keff is only constant as long

as k3<<k1; k2 is satisfied. Otherwise it shows a strong depen-

dence on k3. Calculations for our set of parameters depicted in

Figure 8 indicate that k3 has to be at least two orders of magni-

tude below the smaller spring constant of the system. This is

well fulfilled in our case since the interaction spring constant

for the strongest magnetic field of |B| = 406 mT is approxi-

mately 2 · 10−5 N/m (calculated with Equation 4). Please note

that the results in Figure 8 are only shown for k3 ¿ 0 but the be-

haviour is approximately similar for k3< 0, only with the devia-

tions from the constant values being in the opposite direction.

Since for closely matched frequencies keff is mainly dominated

by the smaller subsystem, a decrease of its stiffness will lead to

an increase in sensitivity. Hence, possible sensor implementa-

tions could include the use of single walled carbon nanotubes as

smaller oscillator or fabrication of the complete sensor in

silicon technology, allowing for production of double cantile-

ver structures with one nanocantilever [13,18].

However, it has to be noted that the low effective spring con-

stant is not the sole reason for the increased signal strength of

the proposed sensor setup. Other groups employed low-stiff-

ness cantilevers for magnetometry measurements as well but

did not obtain such a strong frequency shift signal. In cantilever

magnetometry the signal is related to the length of the sensing

cantilever and the spring constant as stated by Equation 3.

Therefore, an increased cantilever length would in principle

favorably affect the spring constant but nevertheless limits the

sensitivity increase. In view of that our geometry is favorable as

well since the sensing part, i.e., the nanotube, has a low spring

constant while also being relatively short (in the order of

10 μm). Both features contribute to the observed strong increase

in signal strength.

Determination of effective magnetic
monopole moment from measured data
With the determination of keff it is possible to extract magnetic

information from the measured frequency shift data, i.e., k3. It

has been shown that in case of a FeCNT a suitable magnetic

quantity is the effective magnetic monopole moment q of the

iron nanowire [19,20]. Due to its single-domain magnetic struc-

ture it is acting as an elongated magnetic dipole oscillating in a

magnetic field. Since the magnetization of the iron nanowire is

considered to be nearly parallel to the axis of the FeCNT, its

two magnetic poles are positioned at either end, i.e., at a dis-

tance of Lcnt = 10 μm. Furthermore, a decrease of the field of

the NdFeB magnet along the length of the FeCNT of maximal

5 mT is assumed. The interaction of each of the two poles with

the external magnetic field leads to a contribution to the

measured frequency shifts Δfa/b. However, the magnetic pole at

the attachement point between nanotube and cantilever gives a

much lower contribution for several reasons: its oscillation

trajectory radius and sensor stiffness are mainly given by the

cantilever. In contrast to that the sensor stiffness at the free end

of the FeCNT can be described by the soft effective spring con-

stant of the coupled system. Hence, only the monopole at the

free end of the FeCNT contributes to the frequency shift and the

influence of the other pole can be neglected. Thus, the effective

magnetic monopole moment proves to be a suitable parameter

to characterize the magnetostatic behaviour of the iron of the

FeCNT filling in the low external field approximation.
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Following Philippi et al. [16], the effective magnetic monopole

moment q can be related to the interaction spring constant k3:

(6)

Here B is the magnetic flux density generated by the NdFeB

magnet at the position of the free end of the FeCNT (see

Figure 5). The parameter κ is given as the curvature of the oscil-

lating termination point of the FeCNT and has been obtained

from SEM pictures. The mechanical behaviour of an oscillating

nanowire is discussed in depth elsewhere [16] and for our

sensor we determined κ = (0.16 ± 0.016) μm−1.

By inserting Equation 6 in Equation 4 we obtain the relation:

(7)

which is used for a linear regression analysis of the measured

frequency shift data in Figure 7 using the low field range

|B |  <  0 .25 T to  avoid major  deviat ions f rom the

monopole approach. This evaluation yields two q-values

(q1 = 3.05 · 10−10 A·m and q2 = 4.37 · 10−10 A·m) correspond-

ing to the two resonance peaks of the coupled system. Since the

effective magnetic monopole moment has to be the same for

both peaks we calculate the mean value and finally obtain

q = (3.7 ± 0.7) · 10−10 A·m, which corresponds to a magnetic

moment of approximately 4 · 108μB (CNT length 10 μm).

Geometric effective magnetic monopole
moment
For comparison, the q-value of the FeCNT can be determined

from geometric information obtained from high-resolution SEM

pictures. With a diameter of the iron filling of the FeCNT of

dFe = (22 ± 6) nm and saturation magnetization of iron

Ms,Fe = (1.71 ± 0.01) · 106 A/m, the corresponding effective

monopole moment is:

(8)

Despite the relatively large margin of uncertainty due to the di-

ameter measurement of the iron filling, this result corresponds

well to the effective magnetic monopole moment determined

from the frequency shift values. Furthermore, we can also

compare our results to values obtained in other experiments

with iron-filled carbon nanotubes of similar size and find a good

agreement [7,16,21]. These results demonstrate that the co-reso-

nant sensor concept applied to cantilever magnetometry allows

for a quantitative determination of magnetic sample properties

with strongly increased frequency shifts compared to single-

cantilever magnetometry experiments [7].

Measurement limits
When proposing a novel sensor concept, inevitably the ques-

tion regarding the measurement limit arises. The sensitivity

limits of cantilever-based magnetometry sensors have already

been discussed by various groups [3,22,23], leading to three

main considerations which have to be taken into account: the

sensitivity of the detection setup and thermal and magnetic

noise in the oscillating system. From these, thermal noise is

considered to be the most dominant one [24], followed by the

detector noise which is statistically independent of the former

[25]. For our discussion, we will only focus on thermal noise.

Even if only this single noise source is considered it is still an

open question how the noise is distributed in the co-resonantly

coupled sensor system [26]. We will therefore use the approach

of discussing the noise limits for each subsystem, indicating a

range of the sensitivity for the coupled system.

In standard cantilever magnetometry the noise limits the

detectable frequency shift and, hence, the minimal detectable

magnetic moment. The thermal limit for the frequency shift for

a cantilever is given by [25]:

(9)

Hereby kB denotes the Boltzmann constant, T the temperature,

Bw the measurement bandwidth and Q the quality factor. f0 and

k0 are the resonance frequency and spring constant of the canti-

lever and A is the amplitude at the free end of the cantilever. By

following the reasoning of Gysin et al. [23], the frequency shift

Δf induced by a high-aspect ratio, single domain ferromagnetic

cylinder placed on a cantilever is given by Equation 3. Combin-

ing Equation 3 and Equation 9, the minimal detectable magnet-

ic moment is:

(10)

From this expression one can conclude that it is favorable to

have a small cantilever length, a high oscillation amplitude, a

strong magnetic field, small spring constant, high resonance fre-

quency and a large quality factor. Both cantilever length and

amplitude have a major influence on the minimal detectable
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magnetic moment. Furthermore, mmin is maximized if Hext and

Ha are high.

The above expression has been derived for a single cantilever

and it is still under investigation if and how it can be adapted

for the coupled system. It is a reasonable assumption that, in

accordance with the considerations of the effective spring con-

stant, the quality factor will as well be an effective one for the

coupled system. Similarly, the effective magnetic moment

sensitivity of the coupled system is expected to lie in between

the sensitivities of the two single systems. Therefore, in Table 3

we calculated the minimal detectable magnetic moment for both

of our subsystems at room temperature, an external magnetic

field of 1 T and a measurement bandwidth Bw = 1 Hz, in accor-

dance with literature values for such calculations [3,23]. The

necessary parameters for both subsystems are taken from

Table 1 for the unmatched frequency state and the length of

cantilever and nanotube have been taken from SEM pictures:

Lcant = 85 μm and Lcnt = 10 μm. They have been recalculated

into effective lengths by Leff = L/1.377 for the first bending

mode [6]. We are aware of the fact that there are carbon nano-

tubes, especially single wall CNTs, that can exhibit a much

lower stiffness than the FeCNT presented here but we want to

stick to our existing experimental system and have taken the

mechanical properties of the CNT as measured.

Table 3: Minimal detectable magnetic moment for both subsystems of
the coupled system. The calculations have been made for room tem-
perature T = 293 K, a bandwidth of Bw = 1 Hz and magnetic field of
Bext = 1 T.

Parameter Cantilever FeCNT

spring constant [N/m] 133.8 0.0086
amplitude [nm] 10 1000
δf [mHz] 5 26
length [μm] 85 10
mmin [A·m2] 6 · 10−15 1 · 10−20

mmin / μB 7 · 108 1 · 103

From Table 3 we see that the cantilever has a lower minimal

detectable frequency shift (due to its better Q-factor and smaller

resonance frequency) compared to the nanotube but still the

nanotube exhibits a much better magnetic moment resolution of

103 μB at room temperature. It has to be kept in mind that the

magnetization of small particles might not be thermally stable.

Comparing these calculated values to the measured magnetic

moment of the section ’Determination of effective magnetic

monopole moment from measured data’, which was

mFeCNT ≈ 4 · 108 μB, we see that it is already at the limit of

what could be measured with only the silicon cantilever. In our

experiment, we observed a frequency shift of several 100 Hertz

for the resonance frequencies of the coupled system which

already indicates that the magnetic moment sensitivity is signif-

icantly increased compared to that of a single cantilever.

Extending the considerations of Table 3 to single-wall carbon

nanotubes and applying low temperatures, a potential moment

sensitivity in the order of single Bohr magnetons could be

achieved. However, as for the effective spring constant, it will

probably not be possible to obtain the full moment sensitivity of

the nanotube due to the strong interplay between the subsys-

tems, but by using softer cantilevers and softer (unfilled) CNTs

the coupled sensor concept has a great potential of achieving

very low magnetic moment resolution while maintaining an

easy detection at the same time.

Conclusion
We applied the universal concept of a co-resonantly coupled

sensor to cantilever magnetometry by using a commercially

available silicon cantilever and an iron-filled carbon nanotube.

The FeCNT acted simultaneously as nanocantilever and mag-

netic sample and, since the magnetic properties of similar

FeCNTs had already been studied, allowed for demonstrating

the functionality of the sensor setup. The evaluation of the mea-

surements shows that, once calibrated by determining the effec-

tive spring constant, the sensor can be used to derive magnetic

properties of nanometer-sized samples and significantly in-

creases the signal strength by several orders of magnitude com-

pared to conventional single-cantilever magnetometry experi-

ments. A further increase is possible by tailoring the compo-

nents of the coupled system according to the measurement task.

The basic principles of the co-resonant sensor concept [9] are of

general nature and therefore not limited to cantilever magne-

tometry but can also be used to fabricate mass and force sensors

in general.
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