2,877 research outputs found

    Prompt and Delayed High-Energy Emission from Cosmological Gamma-Ray Bursts

    Get PDF
    In the cosmological blast-wave model for gamma ray bursts (GRBs), high energy (> 10 GeV) gamma-rays are produced either through Compton scattering of soft photons by ultrarelativistic electrons, or as a consequence of the acceleration of protons to ultrahigh energies. We describe the spectral and temporal characteristics of high energy gamma-rays produced by both mechanisms, and discuss how these processes can be distinguished through observations with low-threshold Cherenkov telescopes or GLAST. We propose that Compton scattering of starlight photons by blast wave electrons can produce delayed flares of GeV -- TeV radiation.Comment: to appear in Proceedings of VERITAS Workshop on TeV Astrophysics of Extragalactic Sources, eds. M. Catanese, J. Quinn, T. Weeke

    Timing Signatures of the Internal-Shock Model for Blazars

    Full text link
    We investigate the spectral and timing signatures of the internal-shock model for blazars. For this purpose, we develop a semi-analytical model for the time-dependent radiative output from internal shocks arising from colliding relativistic shells in a blazar jet. The emission through synchrotron and synchrotron-self Compton (SSC) radiation as well as Comptonization of an isotropic external radiation field are taken into account. We evaluate the discrete correlation function (DCF) of the model light curves in order to evaluate features of photon-energy dependent time lags and the quality of the correlation, represented by the peak value of the DCF. The almost completely analytic nature of our approach allows us to study in detail the influence of various model parameters on the resulting spectral and timing features. This paper focuses on a range of parameters in which the gamma-ray production is dominated by Comptonization of external radiation, most likely appropriate for gamma-ray bright flat-spectrum radio quasars (FSRQs) or low-frequency peaked BL Lac objects (LBLs). In most cases relevant for FSRQs and LBLs, the variability of the optical emission is highly correlated with the X-ray and high-energy (HE: > 100 MeV) gamma-ray emission. Our baseline model predicts a lead of the optical variability with respect to the higher-energy bands by 1 - 2 hours and of the HE gamma-rays before the X-rays by about 1 hour. We show that variations of certain parameters may lead to changing signs of inter-band time lags, potentially explaining the lack of persistent trends of time lags in most blazars.Comment: Accepted for publication in Ap

    Boundary correlation function of fixed-to-free bcc operators in square-lattice Ising model

    Full text link
    We calculate the boundary correlation function of fixed-to-free boundary condition changing operators in the square-lattice Ising model. The correlation function is expressed in four different ways using 2Ă—22\times2 block Toeplitz determinants. We show that these can be transformed into a scalar Toeplitz determinant when the size of the matrix is even. To know the asymptotic behavior of the correlation function at large distance we calculate the asymptotic behavior of this scalar Toeplitz determinant using the Szeg\"o's theorem and the Fisher-Hartwig theorem. At the critical temperature we confirm the power-law behavior of the correlation function predicted by conformal field theory

    Metastable precursors during the oxidation of the Ru(0001) surface

    Full text link
    Using density-functional theory, we predict that the oxidation of the Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in two-dimensional islands between the first and second substrate layer. This leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal. Continued oxidation results in the formation and stacking of more of these trilayers, which unfold into the RuO_2(110) rutile structure once a critical film thickness is exceeded. Along this oxidation pathway, we identify various metastable configurations. These are found to be rather close in energy, indicating a likely lively dynamics between them at elevated temperatures, which will affect the surface chemical and mechanical properties of the material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond

    Get PDF
    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of L\'evy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also L\'evy processes, of which Brownian Motion is a special case, have become increasingly popular. L\'evy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include L\'evy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the generation of sample paths of Feller processe

    The Hard VHE Gamma-ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet?

    Full text link
    Observations of very-high-energy (VHE, E > 250 GeV) gamma-ray emission from several blazars at z > 0.1 have placed stringent constraints on the elusive spectrum and intensity of the intergalactic infrared background radiation (IIBR). Correcting their observed VHE spectrum for gamma-gamma absorption even by the lowest plausible level of the IIBR provided evidence for a very hard (photon spectral index Gamma_{ph} < 2) intrinsic source spectrum out to TeV energies. Such a hard VHE gamma-ray spectrum poses a serious challenge to the conventional synchrotron-self-Compton interpretation of the VHE emission of TeV blazars and suggests the emergence of a separate emission component beyond a few hundred GeV. Here we propose that such a very hard, slowly variable VHE emission component in TeV blazars may be produced via Compton upscattering of Cosmic Microwave Background (CMB) photons by shock-accelerated electrons in an extended jet. For the case of 1ES 1101-232, this component could dominate the bolometric luminosity of the extended jet if the magnetic fields are of the order of typical intergalactic magnetic fields B ~ 10 micro-Gauss and electrons are still being accelerated out to TeV energies gamma > 4 X 10^6) on kiloparsec scales along the jet.Comment: Accepted for publication in ApJ Letter

    Gamma-Ray Studies of Blazars: Synchro-Compton Analysis of Flat Spectrum Radio Quasars

    Full text link
    We extend a method for modeling synchrotron and synchrotron self-Compton radiations in blazar jets to include external Compton processes. The basic model assumption is that the blazar radio through soft X-ray flux is nonthermal synchrotron radiation emitted by isotropically-distributed electrons in the randomly directed magnetic field of outflowing relativistic blazar jet plasma. Thus the electron distribution is given by the synchrotron spectrum, depending only on the Doppler factor δD\delta_{\rm D} and mean magnetic field BB, given that the comoving emission region size scale R_b^\prime \lesssim c \dD t_v/(1+z), where tvt_v is variability time and zz is source redshift. Generalizing the approach of Georganopoulos, Kirk, and Mastichiadis (2001) to arbitrary anisotropic target radiation fields, we use the electron spectrum implied by the synchrotron component to derive accurate Compton-scattered γ\gamma-ray spectra throughout the Thomson and Klein-Nishina regimes for external Compton scattering processes. We derive and calculate accurate γ\gamma-ray spectra produced by relativistic electrons that Compton-scatter (i) a point source of radiation located radially behind the jet, (ii) photons from a thermal Shakura-Sunyaev accretion disk and (iii) target photons from the central source scattered by a spherically-symmetric shell of broad line region (BLR) gas. Calculations of broadband spectral energy distributions from the radio through γ\gamma-ray regimes are presented, which include self-consistent γγ\gamma\gamma absorption on the same radiation fields that provide target photons for Compton scattering. Application of this baseline flat spectrum radio/γ\gamma-ray quasar model is considered in view of data from γ\gamma-ray telescopes and contemporaneous multi-wavelength campaigns.Comment: Accepted by ApJ. 22 pages, 12 figures, 2 tables. Minor revisions to figures and tex
    • …
    corecore