87 research outputs found

    Functional characterization of STAT6 mutations in follicular lymphoma

    Get PDF

    Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer

    Get PDF
    The HMG-domain transcription factor Sox10 is expressed throughout oligodendrocyte development and is an important component of the transcriptional regulatory network in these myelin-forming CNS glia. Of the known Sox10 regulatory regions, only the evolutionary conserved U2 enhancer in the distal 5â€Č-flank of the Sox10 gene exhibits oligodendroglial activity. We found that U2 was active in oligodendrocyte precursors, but not in mature oligodendrocytes. U2 activity also did not mediate the initial Sox10 induction after specification arguing that Sox10 expression during oligodendroglial development depends on the activity of multiple regulatory regions. The oligodendroglial bHLH transcription factor Olig2, but not the closely related Olig1 efficiently activated the U2 enhancer. Olig2 bound U2 directly at several sites including a highly conserved one in the U2 core. Inactivation of this site abolished the oligodendroglial activity of U2 in vivo. In contrast to Olig2, the homeodomain transcription factor Nkx6.2 repressed U2 activity. Repression may involve recruitment of Nkx6.2 to U2 and inactivation of Olig2 and other activators by protein–protein interactions. Considering the selective expression of Nkx6.2 at the time of specification and in differentiated oligodendrocytes, Nkx6.2 may be involved in limiting U2 activity to the precursor stage during oligodendrocyte development

    Selenoprotein M is expressed during bone development

    Get PDF
    25 selenoproteins that contain selenium, incorporated as selenocysteine (Sec), have been identified to date. Selenoprotein M (SELM) is one of seven endoplasmic reticulum (ER)-resident, Sec-containing proteins that may be involved in posttranslational processing of proteins and maintenance of ER function. Since SELM was overrepresented in a cartilage- and bone- specific expressed sequence tag (EST) library, we further investigated the expression pattern of Selm and its possible biological function in the skeleton. RNA in situ hybridization of Selm in chicken and mice of different developmental stages revealed prominent expression in bones, specifically in osteoblast, and in tendons. This result suggests that SELM functions during bone development, where it is possibly involved in the processing of secreted proteins

    Replacement of mouse Sox10 by the Drosophila ortholog Sox100B provides evidence for co-option of SoxE proteins into vertebrate-specific gene-regulatory networks through altered expression

    Get PDF
    AbstractNeural crest cells and oligodendrocytes as the myelinating glia of the central nervous system exist only in vertebrates. Their development is regulated by complex regulatory networks, of which the SoxE-type high-mobility-group domain transcription factors Sox8, Sox9 and Sox10 are essential components. Here we analyzed by in ovo electroporation in chicken and by gene replacement in the mouse whether the Drosophila ortholog Sox100B can functionally substitute for vertebrate SoxE proteins. Sox100B overexpression in the chicken neural tube led to the induction of neural crest cells as previously observed for vertebrate SoxE proteins. Furthermore, many aspects of neural crest and oligodendrocyte development were surprisingly normal in mice in which the Sox10 coding information was replaced by Sox100B arguing that Sox100B integrates well into the gene-regulatory networks that drive these processes. Our results therefore provide strong evidence for a model in which SoxE proteins were co-opted to these gene-regulatory networks mainly through the acquisition of novel expression patterns. However, later developmental defects in several neural crest derived lineages in mice homozygous for the Sox100B replacement allele indicate that some degree of functional specialization and adaptation of SoxE protein properties have taken place in addition to the co-option event

    Kindlin-2 controls bidirectional signaling of integrins.

    Get PDF
    Control of integrin activation is required for cell adhesion and ligand-induced signaling. Here we report that loss of the focal adhesion protein Kindlin-2 in mice results in peri-implantation lethality caused by severe detachment of the endoderm and epiblast from the basement membrane. We found that Kindlin-2-deficient cells were unable to activate their integrins and that Kindlin-2 is required for talin-induced integrin activation. Furthermore, we demonstrate that Kindlin-2 is required for integrin outside-in signaling to enable firm adhesion and spreading. Our findings provide evidence that Kindlin-2 is a novel and essential element of bidirectional integrin signaling

    Inhibitory Kcnip2 neurons of the spinal dorsal horn control behavioral sensitivity to environmental cold

    Full text link
    Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity. Keywords: circuit; cold; cold allodynia; cold analgesia; cooling; dre recombinase; interneuron; intersectional gene targeting; kcnip2; pai

    Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits

    Get PDF
    Mutations in the ARHGEF6 gene, encoding the guanine nucleotide exchange factor αPIX/Cool-2 for the Rho GTPases Rac1 and Cdc42, cause X-linked intellectual disability (ID) in humans. We show here that αPix/Arhgef6 is primarily expressed in neuropil regions of the hippocampus. To study the role of αPix/Arhgef6 in neuronal development and plasticity and gain insight into the pathogenic mechanisms underlying ID, we generated αPix/Arhgef6-deficient mice. Gross brain structure in these mice appeared to be normal; however, analysis of Golgi-Cox-stained pyramidal neurons revealed an increase in both dendritic length and spine density in the hippocampus, accompanied by an overall loss in spine synapses. Early-phase long-term potentiation was reduced and long-term depression was increased in the CA1 hippocampal area of αPix/Arhgef6-deficient animals. Knockout animals exhibited impaired spatial and complex learning and less behavioral control in mildly stressful situations, suggesting that this model mimics the human ID phenotype. The structural and electrophysiological alterations in the hippocampus were accompanied by a significant reduction in active Rac1 and Cdc42, but not RhoA. In conclusion, we suggest that imbalance in activity of different Rho GTPases may underlie altered neuronal connectivity and impaired synaptic function and cognition in αPix/Arhgef6 knockout mic

    Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo

    Get PDF
    Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function
    • 

    corecore