266 research outputs found

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    Struggling for recognition and inclusion—parents' and pupils' experiences of special support measures in school

    Get PDF
    During the last decade an increasing use of differentiated support measures for pupils with special educational needs, indicative of a discrepancy between educational policies and practices, has been witnessed in Sweden. Another trend has been the increased use of medical diagnoses in school. The aim of this study was to explore the main concern of support given to pupils with special educational needs and how pupils and parents experience and handle this. Interviews were conducted with eight pupils in Grades 7–9—and their parents—at two compulsory schools in a city in northern Sweden. A grounded theory approach was used for analyzing the interview data. A conceptual model was generated illuminating the main concern of special support measures for pupils and parents. The core category of the model, struggling for recognition and inclusion, was related to two categories, which further described how this process was experienced and handled by the participants. These categories were labeled negotiating expertise knowledge within a fragmented support structure and coping with stigma, ambivalence, and special support measures. The developed conceptual model provides a deeper understanding of an ongoing process of struggle for recognition and inclusion in school as described by the pupils and parents

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte

    Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-013-0614-0Purpose Blended cements use waste products to replace Portland cement, the main contributor to CO2 emissions in concrete manufacture. Using blended cements reduces the embodied greenhouse gas emissions; however, little attention has been paid to the reduction in CO2 capture (carbonation) and durability. The aim of this study is to determine if the reduction in production emissions of blended cements compensates for the reduced durability and CO2 capture. Methods This study evaluates CO2 emissions and CO2 capture for a reinforced concrete column during its service life and after demolition and reuse as gravel filling material. Concrete depletion, due to carbonation and the unavoidable steel embedded corrosion, is studied, as this process consequently ends the concrete service life. Carbonation deepens progressively during service life and captures CO2 even after demolition due to the greater exposed surface area. In this study, results are presented as a function of cement replaced by fly ash (FA) and blast furnace slag (BFS). Results and discussion Concrete made with Portland cement, FA (35%FA), and BFS blended cements (80%BFS) captures 47, 41, and 20 % of CO2 emissions, respectively. The service life of blended cements with high amounts of cement replacement, like CEM III/A (50 % BFS), CEM III/B (80 % BFS), and CEMII/B-V (35%FA), was about 10%shorter, given the higher carbonation rate coefficient. Compared to Portland cement and despite the reduced CO2 capture and service life, CEM III/B emitted 20 % less CO2 per year. Conclusions To obtain reliable results in a life cycle assessment, it is crucial to consider carbonation during use and after demolition. Replacing Portland cement with FA, instead of BFS, leads to a lower material emission factor, since FA needs less processing after being collected, and transport distances are usually shorter. However, greater reductions were achieved using BFS, since a larger amount of cement can be replaced. Blended cements emit less CO2 per year during the life cycle of a structure, although a high cement replacement reduces the service life notably. If the demolished concrete is crushed and recycled as gravel filling material, carbonation can cut CO2 emissions by half. A case study is presented in this paper demonstrating how the results may be utilized.This research was financially supported by the Spanish Ministry of Science and Innovation (research project BIA2011-23602). The authors thank the anonymous reviewers for their constructive comments and useful suggestions. The authors are also grateful for the thorough revision of the manuscript by Dr. Debra Westall.García Segura, T.; Yepes Piqueras, V.; Alcalá González, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment. 19(1):3-12. https://doi.org/10.1007/s11367-013-0614-0S312191Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138Berge B (2000) The ecology of building materials. Architectural Press, OxfordBertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, WeinheimBörjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, BrusselsCIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, SacramentoCollins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, SpainDodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286ECO-SERVE Network Cluster 3 (2004) Baseline Report for the Aggregate and Concrete Industries in Europe. European Commission, Hellerup: http://www.eco-serve.net/uploads/479998_baseline_report_final.pdf , accessed 10 September 2012European Federation of Concrete Admixtures Associations (2006) Environmental Product Declaration (EPD) for Normal Plasticizing admixtures. Environmental Consultant, Sittard: http://www.efca.info/downloads/324%20ETG%20Plasticiser%20EPD.pdf , accessed 13 October 2012Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, SpainGalán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930Institute for Diversification and Energy Saving (2010) Conversion factors of primary energy and CO2 emissions of 2010. M. Industria, Energía y Turismo, Madrid, Spain: http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Factores_Conversion_Energia_y_CO2_2010_0a9cb734.pdf , accessed 10 September 2012ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, SwitzerlandISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, SwitzerlandJiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, StockholmLeber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, SpainMarinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093The Concrete Centre (2009) The Concrete Industry Sustainability Performance Report. The Concrete Center, Camberley: http://www.admixtures.org.uk/downloads/Concrete%20Industry%20Sustainable%20Performance%20Report%202009.pdf , accessed 9 September 2012Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, SwedenWeil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206World Steel Association (2010) Fact sheet: the three Rs of sustainable Steel. World Steel Association, Brussels: http://www.steel.org/Sustainability/~/media/Files/SMDI/Sustainability/3rs.ashx , accessed 15 September 2012Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–132

    Healthcare workers' participation in a healthy-lifestyle-promotion project in western Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthcare professionals play a central role in health promotion and lifestyle information towards patients as well as towards the general population, and it has been shown that own lifestyle habits can influence attitudes and counselling practice towards patients. The purpose of this study was to explore the participation of healthcare workers (HCWs) in a worksite health promotion (WHP) programme. We also aimed to find out whether HCWs with poorer lifestyle-related health engage in health-promotion activities to a larger extent than employees reporting healthier lifestyles.</p> <p>Method</p> <p>A biennial questionnaire survey was used in this study, and it was originally posted to employees in the public healthcare sector in western Sweden, one year before the onset of the WHP programme. The response rate was 61% (n = 3207). In the four-year follow-up, a question regarding participation in a three-year-long WHP programme was included, and those responding to this question were included in the final analysis (n = 1859). The WHP programme used a broad all-inclusive approach, relying on the individual's decision to participate in activities related to four different themes: physical activity, nutrition, sleep, and happiness/enjoyment.</p> <p>Results</p> <p>The participation rate was around 21%, the most popular theme being physical activity. Indicators of lifestyle-related health/behaviour for each theme were used, and regression analysis showed that individuals who were sedentary prior to the programme were less likely to participate in the programme's physical activities than the more active individuals. Participation in the other three themes was not significantly predicted by the indicators of the lifestyle-related health, (body mass index, sleep disturbances, or depressive mood).</p> <p>Conclusion</p> <p>Our results indicate that HCWs are not more prone to participate in WHP programmes compared to what has been reported for other working populations, and despite a supposedly good knowledge of health-related issues, HCWs reporting relatively unfavourable lifestyles are not more motivated to participate. As HCWs are key actors in promoting healthy lifestyles to other groups (such as patients), it is of utmost importance to find strategies to engage this professional group in activities that promote their own health.</p

    Broadband Dielectric Spectroscopy on Glass-Forming Propylene Carbonate

    Full text link
    Dielectric spectroscopy covering more than 18 decades of frequency has been performed on propylene carbonate in its liquid and supercooled-liquid state. Using quasi-optic submillimeter and far-infrared spectroscopy the dielectric response was investigated up to frequencies well into the microscopic regime. We discuss the alpha-process whose characteristic timescale is observed over 14 decades of frequency and the excess wing showing up at frequencies some three decades above the peak frequency. Special attention is given to the high-frequency response of the dielectric loss in the crossover regime between alpha-peak and boson-peak. Similar to our previous results in other glass forming materials we find evidence for additional processes in the crossover regime. However, significant differences concerning the spectral form at high frequencies are found. We compare our results to the susceptibilities obtained from light scattering and to the predictions of various models of the glass transition.Comment: 13 pages, 9 figures, submitted to Phys. Rev.

    Advantages of a Polycentric Approach to Climate Change Policy

    Get PDF
    Lack of progress in global climate negotiations has led scholars to reconsider polycentric approaches to climate policy. Several examples of subglobal mechanisms to reduce greenhouse-gas emissions have been touted, but it remains unclear why they might achieve better climate outcomes than global negotiations alone. Decades of work conducted by researchers associated with the Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis at Indiana University have emphasized two chief advantages of polycentric approaches over monocentric ones: they provide more opportunities for experimentation and learning to improve policies over time, and they increase communications and interactions — formal and informal, bilateral and multilateral — among parties to help build the mutual trust needed for increased cooperation. A wealth of theoretical, empirical and experimental evidence supports the polycentric approach

    Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.

    Get PDF
    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.The SH lab is supported by the Leverhulme Trust (RPG-170), UCL Chemistry, EPSRC (Institutional Sponsorship Award), the National Physical Laboratory, and Oxford Nanopore Technologies. KG acknowledges funding from the Winton Program of Physics for Sustainability, Gates Cambridge and the Oppenheimer Trust. UFK was supported by an ERC starting grant #261101.This is the final version of the article. It was first published by ACS under the ACS AuthorChoice license at http://dx.doi.org/10.1021/nn5039433 This permits copying and redistribution of the article or any adaptations for non-commercial purposes
    corecore