22 research outputs found
The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio
Development and Application of Efficient Agâbased Hydrogenation Catalysts Prepared from Rice Husk Waste
The development of strategies for the sustainable management and valorization of agricultural waste is of outmost importance. With this in mind, we report the use of rice husk (RH) as feedstock for the preparation of heterogeneous catalysts for hydrogenation reactions. The catalysts were prepared by impregnating the milled RH with a silver nitrate solution followed by carbothermal reduction. The composition and morphology of the prepared catalysts were fully assessed by IR, AAS, ICP-MS, XPS, XRD and STEM techniques. This novel bio-genic silver-based catalysts showed excellent activity and remarkable selectivity in the hydrogenation of nitro groups in both aromatic and aliphatic substrates, even in the presence of reactive functionalities like halogens, carbonyls, borate esters or nitriles. Recycling experiments showed that the catalysts can be easily recovered and reused multiple times without significant drop in performance and without requiring re-activation. © 2021 The Authors. ChemCatChem published by Wiley-VCH Gmb