56 research outputs found

    Design and Control of an Inverter for Photovoltaic Applications

    Get PDF

    Three-Phase Unbalanced Load Flow Tool for Distribution Networks

    Get PDF
    This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based on Matlab®. The tool can be used to assess steady-state voltage variations, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV) generators where most of the systems are single phase. New ancillary service such as static reactive power support by PV inverters can be also merged together with the load flow solution tool and thus, the impact of the various reactive power control strategies on the steady-state grid operation can be simply investigated. Performance of the load flow solution tool in the sense of resulting bus voltage magnitudes is compared and validated with IEEE 13-bus test feeder

    Controlling attosecond transient absorption with tunable, non-commensurate light fields

    Get PDF
    We demonstrate a transient absorption scheme that uses a fixed-spectrum attosecond pulse train in conjunction with a tunable probe laser to access a wide range of nonlinear light-atom interactions. We exhibit control over the time-dependent Autler–Townes splitting of the 1s4p absorption line in helium, and study its evolution from a resonant doublet to a light-induced sideband with changing probe wavelength. The non-commensurate probe also allows for the background-free study of two-infrared-photon emission processes in a collinear geometry. Using this capability, we observe two different emission pathways with non-trivial delay dependencies, one prompt and the other delayed. We identify the nonlinear processes underlying these emissions by comparing the experimental results to calculations based on the time-dependent Schrödinger equation
    • …
    corecore