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 
Abstract—This work develops a three-phase unbalanced 

load flow tool tailored for radial distribution networks based 
on Matlab®. The tool can be used to assess steady-state voltage 
variations, thermal limits of grid components and power losses 
in radial MV-LV networks with photovoltaic (PV) generators 
where most of the systems are single phase. New ancillary 
service such as static reactive power support by PV inverters 
can be also merged together with the load flow solution tool 
and thus, the impact of the various reactive power control 
strategies on the steady-state grid operation can be simply 
investigated. Performance of the load flow solution tool in the 
sense of resulting bus voltage magnitudes is compared and 
validated with IEEE 13-bus test feeder. 
 

Index Terms—Load flow, LV network, PV integration, 
voltage unbalance.  

I.  INTRODUCTION 

OWER balance between generation-consumption and 
power quality are two essential targets on the overall 

electrical power system to be continuously maintained 
within the most economical way of delivery. Assuming that 
power balance is guaranteed by the central power generators 
under varying power demand, network components will be 
exposed to certain amount of current and voltage stresses 
and will generate losses in the network. Load flow study 
here plays an important role as a tool to assess these stresses 
in the steady-state domain.  

Minimum requirements of a load flow solution will vary 
depending on whether power system under study is 
transmission or distribution network. Exemplifying this, 
power flow in transmission networks is usually balanced 
and the network structures likely contain meshed or looped 
lines. Therefore, it is sufficient to represent transmission 
systems as single phase components. On the other hand, 
distribution networks typically accommodate 
single/two/three-phase loads and four-wire cables/lines so 
that load flow solutions shall handle unbalanced power flow 
with 3-phase modeling of network components. Since 
distribution networks mostly operate in radial structure, 
more straightforward and convergence guaranteed load flow 
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solutions can be employed by taking advantage of this 
structure. 

In general, this work was inspired by MatDyn tool [1]-
[2] which focuses on dynamical analysis of power systems, 
MATPOWER [3] and PSAT [4] that were developed to run 
balanced load flow/optimal load flow on single-phase 
equivalent circuits especially for transmission networks. 
However, in reality, rooftop PV installations have usually 
widespread usage in residential areas through single-phase 
connections. Therefore, regarding of more realistic network 
analysis, a 3-phase load flow script can allow more precise 
estimation of PV hosting capacity in unbalanced cases.   

Most of the load flow solution methods proposed so far 
in the literature can be generalized in three groups: 

 Gauss-like methods [5]-[8], 
 Newton-Raphson (NR) based methods [9]-[14], and 
 Backward-forward sweep (BFS) based methods 

[15]-[17]. 
Concerning precise estimation of PV hosting capacity of 

distribution networks, primary requirements can be 
summarized as 

1. All class of loads including 2-phase, single-phase 
and constant impedance, constant power, constant 
current types or their combination shall be 
represented in a load flow study for more realistic 
investigation, 

2. Load flow solver shall take into account of 
asymmetric layouts and mutual coupling situation of 
lines, cables and transformers, 

3. Time series simulation is necessary for daily, 
monthly and yearly assessments. Therefore, the 
solver shall be fast enough to run load flow for one 
year period with certain time steps, e.g. every 15 
minutes, 

4. Any user-defined functions and ancillary services of 
PV inverters should be integrated into the load flow 
solver without need of another program, 

5. Load flow solver should be flexible to enable 
statistical study on the resulting data. 

Although the first three requirements can be provided by 
some commercial power system simulation packages 
(PowerFactory, NetBas, CYMDIST, etc.), a MATLAB® 
based unbalanced load flow solver has been developed in 
this work based on the various state of the art publications 
from the literature and thus, it can be used for the 
assessment of maximum PV hosting capacity of distribution 
networks. 
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A generalized functional block diagram is depicted in 
Fig. 1. In the following sections, the load flow solution 
concept is given firstly and a bus and branch numbering 
technique based on breadth-first search algorithm is 
described. Next, power systems modeling of some 
components (lines/cables, transformers, shunt capacitors, 
loads) are briefly provided as 3-phase representations. Load 
flow solver developed in Matlab® is validated on IEEE 13-
bus test networks. 

II.  LOAD FLOW SOLUTION CONCEPT 

BFS method is selected here as the most suitable solver 
due to its simplicity and better convergence performance 
compared to Gauss-like and NR based methods under the 
assumption of radial network structures. The main 
advantage of BFS algorithm is the straightforward 
implementation of Kirchoff’s current and voltage laws on 
the feeders. In this way, branch currents and bus voltages 
are updated by traversing between the root (source or slack) 
bus and end buses in iterative way (Fig. 2). Specifying 
initial bus voltages and nominal ratings of shunt 
components (loads, capacitor banks, and generators), 
backward sweep updates branch currents by summation of 
child branches and shunt currents from end nodes toward 
the root node. Similarly, starting from the specified root bus 
voltage and knowing the branch currents from the previous 
backward sweep, bus voltages are updated from the root 
node towards end nodes by means of voltage drops along 
the branches. Thus single iteration of backward-forward 
sweep is completed. If line charging capacitances are 
neglected, two general equations as referred to Fig. 2 for 
backward and forward sweep can be written as (1)-(2) 
respectively. 


tbus fbus fbus
i i i subbranch

shunt sub branch
currents currents

J J I J



  
                                     (1) 

1
fbus

i i i branchV V J Z                                                        (2) 

Consecutive backward-forward sweep is terminated 
when the difference of resulting bus voltage magnitudes 
based on the previous iteration are less than predetermined 
tolerance value. 

It should be noticed that BFS procedure must follow the 
branch current and bus voltage updates in a proper 
sequence. Therefore, bus and branch ordering will play 
important role to obtain a correct network solution. 

III.  BUS AND BRANCH NUMBERING TECHNIQUE 

BFS concept as shown above briefly converges to a 
unique and accurate solution as long as bus-branch 
connection structure for the whole network is provided. 
Given (m-1) branches will form an m-bus network. Each 
branch located between two predefined buses (“from bus” 
and “to bus”) is the only relevant input data to the load flow 
solver. The aim is to assign unique numbers to buses in such 
a way that backward and forward sweeps can follow the 
sequential branches systematically between the root bus and 
end buses. Breadth-first and depth-first search methods are 
the simplest graph algorithms to achieve this goal [19] and 
they are both classified as uninformed search methods. As 
distinct from depth-first method, breadth-first search method 
explores all the nodes reachable from the root node in a 
graph. Accordingly, it is applicable on mesh structured 
distribution networks because of producing inherently 
“breadth-first tree” form from the looped graphs. 

Bus and branch numbering can be integrated into the 
breadth-first search algorithm. As proposed in [18], a three-
index scheme that assigns branch level (l), branch index (m) 
and bus index (n) to each bus is systematically introduced in 
(l,m,n) order. The main idea behind the bus numbering 
technique is that buses located on the same feeder will be 
identified with the same branch level l, and the buses on the 
other child sub-branches will have level of l+1. If multiple 
sub-branches within the same level exist in the network, 
then buses on the same level of sub-branches can be 
uniquely identified by lateral index m. Lastly, the third 
index of n refers to the nth bus on the branch (l,m). An 
example of bus numbering is illustrated in Fig. 3. 

 
Fig. 1.  Generalized functional block diagram of the load flow method developed in Matlab® 



 

IV.  COMPONENT MODELING 

A.  3-Phase Distribution Line/Cable Model 

Unsymmetrical spacing between phase conductors 
without transposition is the most common property of 
distribution lines. It is likely to see unequal voltage drops 
among the phases, even though power flow is balanced 
along a distribution line. For this reason, unbalanced three-
phase load flow solution will require accurate modeling of 
distribution lines for the steady-state voltage analysis. 
Additionally, in reality, loads and distributed generators are 
usually connected between line and neutral terminals for 3-
phase 4-wire systems. However, most of the distribution 
network analysis disregards the phase to neutral voltages so 
that voltage unbalance is miscalculated. Therefore, neutral-
to-earth voltage (NEV) at each node can be estimated here 
for multi-grounded neutral system. In case of unbalanced 
load flow condition, the return current will be divided into 
neutral and earth circuit. Share amount of return currents 
among neutral and earth circuit mainly depends on the 
neutral conductor and grounding electrode impedances. On 
account of this, unlike Kersting’s phase impedance matrix 
[20], neutral conductors can be explicitly represented here 
in the series impedance of lines/cables. Since the equivalent 
shunt impedance of lines/cables (e.g. line charging 
capacitor) has negligible impact on voltage drop in 

distribution networks, only series impedances will be 
considered here. 

Carson’s line equations have been used to generate a 
series impedance matrix for the given line/cable 
configuration in this work (Appendix). Fig. 4 depicts typical 
3-phase 4-wire overhead line and its equivalent circuit. 
Voltage drop along a line based on the primitive impedance 
matrix (A.7) as provided in Appendix can be calculated as: 
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   (3) 

where 
Va,b,c,n(i) are the phase and neutral voltages of the ith node as 
referenced to their own local earth, 
Ja,b,c,n(i) are the incoming branch phase and neutral currents 
of the ith node. 

In order to solve voltage drop in (3), phase and neutral 
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Fig. 2.  Two-bus and single-line representation of distribution networks for the solution of BFS algorithm 

 
Fig. 3.  An example of bus numbering for a radial structure 

Fig. 4.  Typical 3-phase 4-wire overhead line segment (upper); and its 
generalized circuit representation (bottom) 



 

branch currents have to be determined accurately during 
backward sweep. For the computation of neutral branch 
current Jn, three constraints are introduced as in (4)-(6) and 
as referred to Fig. 5 [22]. 

( ) ( ) ( )g n grI i V i Z i                                                             (4) 

( ) ( ) ( )n g resJ i I i I i                                                           (5) 

and the last constraint is defined by the last row of (3): 
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             (6) 

By combining (4)-(6), the branch neutral current is 
provided in terms of neutral voltage of parent node, 
grounding impedance of local node, incoming branch phase 
currents, and residual current that is calculated by 
summation of all sub-branches: 

   ( 1) ( ) ( ) ( ) ( )
( )

( ) ( )
n in abc res gr

n
gr nn

V i z i J i I i Z i
J i

Z i z i
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


            (7) 

where Ires is the residual current and computed as: 
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M is the set of sub-branches that branch off the ith node, IL(i) 
and Ish(i) denote load and shunt capacitor currents in 
respectively; absorbed by the ith node. 

Phase currents along the branch are determined as given 
in (9) during backward sweep and finally, the required 
branch currents will be completed to compute voltage drops 
in (3). 
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 (9) 

Sgen(i) is the apparent power of constant PQ generator 
connected at ith node. 

B.  Load Model 

Compared to transmission networks, various balanced 
and unbalanced load types exist in distribution networks 
according to number of phases (1- or 3-phase) and 
connection types (delta or star). Moreover, in the sense of 
electricity consumption characteristics, constant power, 
constant current, constant admittance or any combination 

must be performed for the realistic load models. If a 
measured load profile is available with certain time 
intervals, then the class of constant power may be preferred 
selection among the other load characteristics. For some 
cases, only load density along a line is specified in terms of 
kVA/km and usually assumed to be uniformly distributed 
for the simplicity. In accordance with this, loads can be 
further classified as spot and uniformly distributed loads. 
Fig. 6 shows wye- and delta-connected spot loads while 
Table I summarizes model equations where Ik, Vk represent 
load phase currents and voltages at kth iteration, 
respectively. From the specified rated power (SL) and rated 
voltage levels (Vrated) of loads, the nominal current (Inom) and 
nominal admittance (ynom) values per phase are determined 
to be used in Table I: 
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L aL anom nom
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a a

L abL abnom nom
L ab L abrated rated rated rated

a b a b

SS
I y

V V

SS
I y

V V V V





 
   
 

 
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(10) 

Matrix T used in Table I provides transformation of the 
phase currents into the line currents which are eventually 
necessary to compute branch currents. 

1 0 1
1 1 0

0 1 1
T

 
  
  

 

Without loss of generality, generator models considered 
in this work will be equivalent to negative constant power 
loads. Since most of the generators connected to MV and 
LV distribution networks operate in constant power mode. 
 

 
Fig. 6.  Wye (left) and delta-connected (right) spot loads 

C.  Shunt Capacitor Model 

Shunt capacitors are located on the distribution networks in 
order to help regulating voltage levels and compensate 
reactive power demand. From the modeling point of view, 
their implementation in load flow simulation is similar to the 
constant admittance load model. 

D.  3-Phase Two-Winding Transformer Model 

Regarding of European distribution networks, 20-kV or 
10-kV MV distribution networks are commonly engaged to 
60-kV or 110-kV sub-transmission networks through the 
substations that usually contain delta-delta (D-D) 
connection type of transformers with on-load tap changers. 

 
Fig. 5.  Closer look on the neutral and grounding circuit. Current 

directions are matched with Carson’s circuit 



 

On the other hand, 400-V 3-phase 4-wire secondary 
distribution feeders branch off MV feeders along delta - 
grounded wye (D-Yg) transformers with off-load tap 
changers. 

Modeling of 3-phase distribution transformers in phase 
coordinates requires more attention due to the possibility of 
having ill-conditioned matrices for certain type of 
transformers. Basically, two modeling approaches exist in 
the literature. Direct approach is based on application of 
Kirchoff’s voltage and current loops for both primary and 
secondary circuit of the transformer [23]. This transformer 
modeling approach is developed only for BFS load flow 
algorithm. The other method generates nodal admittance 
matrices that represent 3-phase transformer configurations 
[24]-[27]. The operability of nodal admittance matrix-based 
modeling approach is more extensive and it is able to 
support any load flow algorithm. However, matrix 
singularity problem of some transformer configurations 
leads to limited implementation of nodal admittance matrix 
approach. 

In this work, nodal admittance matrix-based transformer 
modeling tailored for BFS load flow algorithm has been 
developed. Matrix singularity problem is stressed and then 
fixed by means of introducing additional constraints on the 
node admittance matrix of transformer. Although modeling 
of D-Yg type step-down transformer will be presented here, 
the same modeling methodology can be further applied to 
the other connection types of two-winding transformers. 

It will be assumed that the secondary side line-to-line 
voltages are lagging the primary side line-to-line voltages 
by 30º which represents the prevalent class of transformers 
(D-Yg1) in Europe (Fig. 7). In this respect, secondary side 
terminal currents will be also lagging the primary side 
terminal currents by 30º. As another assumption, 
magnetizing impedance of the transformer is sufficiently 
high to be neglected as compared to leakage impedance. 
Furthermore, each primary-secondary phase windings are 
assumed to be formed by separate and identical single-phase 

transformers (this is why it is also called as 3-phase 
transformer bank). This makes cross couplings between the 
primary and secondary windings zero and simplifies 
mathematical modeling of the transformers with tolerable 
errors. Additionally, mutual admittance (m) between each 
phase will be assumed to equal to winding leakage 
admittances (y=m). 

As a first step to computation of node admittance matrix, 
primitive admittance matrix (Yprim) that represents 
relationship between phase voltages and currents at primary 
and secondary circuits is formed. Then, connection matrices 
(C and D) transforms the phase quantities into the node 
quantities, thus, the resulted node voltages and currents can 
be directly used in load flow solution. 

node node

T
ph prim node

I Y

C I D Y C V    
 

                                            (11) 

Each transformer configuration will have its own 
primitive admittance and connection matrices. For this 
reason, it will be necessary to store the resulting node 
admittance matrices for various transformer configurations 
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Fig. 7.  D-Yg1 transformer bank connection and its positive-sequence 

current phasor diagram based on [23] 



 

in load flow solution tool. The primitive impedance matrix 
Yprim, the connection matrices (C, D) and the node 
admittance matrix Ynode are given in Appendix based on Fig. 
7.  

Concerning the BFS load flow algorithm, phase currents 
at primary side are computed in terms of secondary side 
currents and voltages during backward step. Similarly, 
secondary side terminal voltages are expressed in terms of 
the primary side voltages and currents during forward step. 
This is summarized in Table II based on (A.14). 

However, it can be investigated from (A.14) that sub-
matrices of 

ppY  and 
psY  are not invertible and only two of the 

three equations in these sub-matrices are linearly 
independent. For this reason, additional constraints must be 
introduced in such a way that singularities of 1

ppY   and 1
psY   

are avoided. 
The first constraint is introduced by non-existence of 

zero sequence voltage at delta side of the transformer so that 
the sum of primary side line-to-line voltages will be zero. 
The other constraint comes with a relationship between the 
currents and voltages at grounded-wye side of the 
transformer using (A.14). Thus, as referred to (A.14), if 
secondary currents are sum up, 

 s a b c AB BC CAI i i i y V V V      
                              ag bg cgy V V V  

                        (12) 

then the forward sweep equation in Table II is updated by 
imposing (12) into the its third row as: 


0 0 0

s pps pp

ag

bg p

cg s

V IY Y

V

V V

y y y V i

      
               
               

                (13) 

and new updated 
psY  becomes invertible matrix at all. On 

the other hand, regarding of the backward step; 
spY  was 

already invertible so there is no need of introducing 
constraints for the backward sweep. 

E.  Computation of Network Active Power Losses 

Regardless of what computation method is used, total 
branch losses of distribution networks can be calculated 
once bus voltages and branch currents all over the network 
are obtained accurately after running a load flow simulation. 
Although branch impedance can be used to estimate active 
power losses by means of I2R, this method gives rise to 

inaccurate solution due to phase mutual couplings in 3-
phase systems. In general, loss dissipated along a branch is 
equivalent to the difference between branch entering and 
branch outgoing power. 
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S S S
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V I V I
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 

       
         
   

       

                    (14) 

where Sfbus,k denotes apparent power entering into the kth 
branch and Stbus,k refers to the apparent power leaving the kth 
branch. 

V.  VALIDATION OF THE DEVELOPED LOAD FLOW TOOL 

IEEE 13-bus test network is used to examine modeling 
performance of various components such as cables and lines 
with diverse configurations, all kind of loads, shunt 
capacitors, voltage regulator and transformers. Fig 8 
illustrates the 13-bus test network. Minor modification has 
been applied on the original test network as following: 
1) Delta-connected, constant power (Y-PQ) uniformly 

distributed load situated between nodes 2 and 3 has been 
removed from the original network. Since most of the 
distributed load had been connected to phase c, new result 
will overestimate the phase c voltage. 

2) In the original test network, a switch and an additional 
node exist between node 3 and 11. Since load flow results 
published by IEEE consider only “on” state of the switch, 
it doesn’t make sense to include it in this work. 
Modeling data can be found in [28]. The on load tap 

changer (OLTC) is positioned at [10 8 11] for phase a, b, c 
respectively in such a way that minimum voltage level in the 
network becomes higher than 0.95 p.u. Fig. 9 shows the 3-
phase line-to-ground voltage profile of the network 
provided by the developed load flow tool. However, in this 
case, the nearest nodes to OLTC will experience severe 
voltage boosting. Therefore, increasing tap positions further 
levels cannot be accepted although maximum tap position of 
the OLTC is 16 per phase. Therefore, connecting shunt 
capacitors at far end nodes can help mitigating this problem 
for long distribution feeders. The results obtained by the 
developed load flow simulation have been compared with 
the results from Radial Distribution Analysis Package 
(RDAP) [29] as shown in Fig. 9. Phase c voltages from both 
results are overestimated due to removal of the uniformly 
distributed load in the modified network. Overall voltage 
mismatches take place in the acceptable level of 0.1-2 % as 
referenced to IEEE and RDAP simulation results. 

Fig. 10 illustrates comparison of resulting node voltages 
as line-to-ground and line-to-neutral together. Considering 
line-to-neutral voltages, lightly loaded phase b moves to 
emergency condition and relevant tap setting of OLTC or 
the rating of shunt capacitors connected to phase b must be 
re-adjusted to prevent this overvoltage situation. Another 
point is the effect of grounding impedance on the neutral 
voltage. As depicted in Fig. 11, neutral voltages do not vary 

TABLE II 
TRANSFORMER MODEL VALID FOR ALL CONFIGURATIONS: CURRENT 

AND VOLTAGE COMPUTATION FOR BFS STEPS 

Backward step Forward step 

Step 1.  

   1

p sp s ss sV Y I Y V


    

Step 1.  

   1

s ps p pp pV Y I Y V


     

Step 2.   

p pp p ps sI Y V Y V    



 

substantially as grounding impedance is increased to 100 
ohms. It is obvious that slightly shifting up of neutral 
voltages is observed due to the fact that higher grounding 
impedance forces more return currents to flow through the 
neutral conductor. 
 

 
Fig. 9.  Line-to-ground voltage profile of IEEE 13-bus network with OLTC 

 

Fig. 10.  Line-to-ground and line-to-neutral voltages 
 

 Fig. 11.  Neutral-to-ground voltages and branch currents 

VI.  CONCLUSION 

Since the load flow solution methods are well 
documented in the literature, one of the attentions here is to 
investigate and establish appropriate technics special for the 
distribution networks. Owing to Matlab®’s powerful 
computational performance and ready-to-use functions, the 
tool becomes flexible by allowing users to develop their 
own special model functions (thermal model of components, 
ancillary services, detailed generator models, etc.) and any 
special network analysis (statistical load flow solution, 
yearly energy and loss analysis, etc.). The tool will be 
practiced on a realistic LV network in order to estimate its 
maximum PV hosting capacity with different unbalanced 
scenarios. 

New load flow tool has been successfully implemented 
on 3-phase 4-wire circuits. Thus, besides on phase voltage 
unbalance, neutral-to-ground voltages and neutral currents 
can also be assessed for multi-grounded neutral systems.  

VII.  APPENDIX 

A.  Carson’s Equations for Line Modeling 

Fig. A.  Carson’s two-conductor circuit with ground return (left); physical 
layout of two conductors with ground return (right) 

 

Fig. A illustrates Carson’s line circuit and two-conductor 
line spacing layout with their image conductors. For 
unbalanced power flow situation, it is obvious that current 
injections will return to the source through the earth 
(fictitious ground wire). When receiving end nodes are 
shorted at the remote earth together, self- and mutual-
impedances of conductors can be determined by knowing 
sending node voltages (Vi,Vj) and currents flowing along the 
conductors (Ii, Ij). 

i i i ii ij ig i

j j j ij jj jg j

g g g ig jg gg g

V V V z z z I

V V V z z z I

V V V z z z I

        
                  
               

               (A.1) 

 
Fig. 8.  IEEE 13-bus network [28]. Solid lines represent overhead 

lines; dashed lines refer to underground cables 



 

where i j gV V V   , 0gV   and 0i j gI I I   . Thus 

reduced voltage equation for the ith conductor becomes: 

   2

    = 

i ii ig gg i ij ig gg gj j

ii i ij j

V z z z I z z z z I

z I z I

         

  
(A.2) 

If simplified Carson’s equations are used based on [20]-
[21], then self- and mutual impedance of conductor 
including ground effects thus becomes: 

  
2

       + 4 ln 5.7974 ln

ii i

ii i i

z r fG

j fG S GMR f h



 

 

  
   (A.3) 

  
2

      4 ln 6.4906 ln

ij

ij ij ij

z fG

j f G S D f S



 



    
  (A.4) 

where 

iiz  is the self-impedance of ith conductor in Ω/km or Ω/mile, 

ijz  is the mutual-impedance between ith and jth conductor in 

Ω/km or Ω/mile, 
ri is the resistance of ith conductor in Ω/km or Ω/mile,   
f is the system frequency in Hz, 
hi is the height of ith conductor in meter (Sii=2hi), 
GMRi is the geometric mean radius of ith conductor in meter, 
ρ is the resistivity of earth in Ω-meters, 
Sij is the distance between conductor i and conductor j’ 
(image of conductor j) in meter, 
Dij is the distance between conductor i and conductor j in 
meter 
G=10-4 in Ω/km or 0.1609347·10-3 in Ω/mile 
and 

  3

8

1
0.0386 ln 2 2 2.8099 10 ln

2

ij

ij i

P

Q f h







       

(A.5) 

32.8099 10ij ijr S f                                                

(A.6) 
After this point, the primitive series impedance matrix 

can be formed. It should be noticed that ground-related 
terms are already merged into the self- and mutual-
impedances of phase and neutral conductors if Carson’s 
equations are directly implemented [20]. Accordingly, the 
primitive series impedance matrix is given as: 

aa ab ac an

ba bb bc bn
prim

ca cb cc cn

na nb nc nn

z z z z

z z z z
z

z z z z

z z z z

 
 
 
 
 
 

                                         (A.7) 

 

B.  Admittance Matrices for D-Yg1 Transformer 

Based on Fig. 7, the primitive admittance matrix is 
written as following: 

0

0

0

0

0

0

0 0 0 0 0 0

prim

CA CA

AB AB

BC BC

as an

bs bn

cs cn

ns ns ns

Y

i y m V

i y m V

i y m V

i m y V

i m y V

i m y V

i y V

     
          
     
          
     
     

     
     
     

     (A.8) 

where subscripts in big letters denote the primary side phase 
quantities and subscripts in small letters represent the 
quantities in secondary circuit. vns refers neutral grounding 
admittance. It should be noticed that ungrounded side 
terminal voltages are represented in line-to-line whereas 
grounded side terminal voltages are given in terms of line-
to-ground voltages. The connection matrices C and D are: 

0 0 1 0

1 0 0 0 0

0 1 0 0

1 1

0 1 1

1 1

0 0 0 0 0 0 1

CA AB

AB BC

BC CA

an ag

bn bg

cn cg

ng ng
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V V
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V V

V V

V V

V V

V V

     
     
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     
          
     
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     

                   (A.9) 
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                 (A.10) 

and, 7-by-7 node admittance matrix becomes: 
0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

3

      

node

ns

pp ps pn

sp ss sn

np ns nn

y y y y

y y y y

y y y y

y y yY

y y y

y y y

y y y y y y y y

Y Y Y

Y Y Y

Y Y Y
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                 (A.11) 

Further reduction can be applied on (A.11) since current 
entering into the internal neutral node (ns) is only supplied 
by the internal sum of phase currents and there is no 
external current injection to the internal neutral node. 
Therefore, the last row of Ynode can be rewritten as: 

 1,

0

p

s n nn np p ns s

n np ns nn n

V

V V Y Y V Y V

i Y Y Y V



     
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        
          

(A.12) 



 

Vp denotes  TAB BC CAV V V  and Vs is 
T

ag bg cgV V V   . 

For example, when (A.12) is applied to the primary side 
current (top row of Ynode): 
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       (A.13) 

And if the same is repeated for the secondary currents, then 
generalized 6-by-6 reduced node admittance matrix can be 
obtained as 

1 1

1 1

11 12

21 22

0 0

0 0

0 0
      

pp pn nn np ps pn nn ns
node

sp sn nn np ss sn nn ns
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where m=y2/(3y-yns) and n=y2/(3y-yns)-y. For solidly 
grounded D-Yg1 transformer (

nsy  ), the node 

admittance matrix becomes: 
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0 0
lim

0 0

0 0

0 0
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pp ps
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