9 research outputs found

    Ultrafast structural changes direct the first molecular events of vision

    Get PDF
    èŠ–èŠšă«é–ąă‚ă‚‹ă‚żăƒłăƒ‘ă‚ŻèłȘăźè¶…é«˜é€Ÿćˆ†ć­ć‹•ç”» --è–„æš—ă„ăšă“ă‚ă§ć…‰ă‚’æ„Ÿă˜ă‚‹ä»•ç”„ăż--. äșŹéƒœć€§ć­Šăƒ—ăƒŹă‚čăƒȘăƒȘăƒŒă‚č. 2023-03-23.Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation

    Micro-Crystallization and Time-Resolved Diffraction Studies of a Bacterial Photosynthetic Reaction Center

    Get PDF
    Photosynthesis is one of the most important set of chemical reactions in nature as they can convert sunlight into hydrocarbons and chemical energy. The proteins responsible for this are two general types of reaction centers that can be found in a wide variety of living organisms capable of photosynthesis, from bacteria to algae and plants. Despite the range of host cells the reaction centers themselves have fairly conserved structure and function where the absorption of light leads to an electron transfer process and eventually the production of energy. The work in this thesis is focused on the bacterial reaction center from Blastochloris viridis, which is an analogue to photosystem II in plants. Our studies aimed to further examine exactly what happens in the protein as light is absorbed. X-ray crystallography has been an important tool for determining the atomic structure of proteins for several decades. This technique requires that the protein in question is in a crystalline form or else no structural data can be obtained. The development of a new generation of X-ray sources, X-ray free-electron lasers, makes new types of experiments possible but it also requires new ways of preparing crystals for the highly specialized delivery systems used. This thesis presents new ways of preparing membrane protein microcrystals for different types of delivery media. A new way to make crystals in lipidic cubic phase is presented based on setting up crystallization trials in deep-well plates and vials rather than the standard gas-tight syringes. This basic protocol has been developed to add crystal seeds as well as making crystals in an oxygen-free environment. Using this method a 2.3 Å resolution X-ray structure of reaction center was obtained from seeded crystals measuring only 20 ÎŒm. For crystals growing in vapour diffusion several techniques of generating crystals are presented depending on how far the screening protocols have been developed; initial crystals can simply be crushed into the size required and more homogeneous microcrystals can be produced by a seeding protocol. These crystals were then used in a time resolved study at an XFEL showing the structural movements of the cofactors in the protein picoseconds after photon absorption

    Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature

    Get PDF
    Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described

    Ultrafast structural changes direct the first molecular events of vision

    No full text
    Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.ISSN:0028-0836ISSN:1476-468

    Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    No full text
    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX

    A three-dimensional movie of structural changes in bacteriorhodopsin.

    No full text
    International audienceBacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient

    Ultrafast structural changes within a photosynthetic reaction centre

    No full text
    Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.peerReviewe
    corecore