8 research outputs found

    DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML)

    Get PDF
    Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML

    DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML)

    Get PDF
    Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML

    DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL.We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5.Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.Swedish Foundation for Strategic Research RBc08-008 Swedish Cancer Society CAN2010/592 Swedish Childhood Cancer Foundation 11098 Swedish Research Council for Science and Technology 90559401 Swedish Research Council FORTE Swedish Research Council FORMAS Swedish Research Council VINNOVA Swedish Research Council VR 259-2012-2

    ProteinSeq: High-Performance Proteomic Analyses by Proximity Ligation and Next Generation Sequencing

    Get PDF
    Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 µl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use

    Developer-Friendly and Computationally Efficient Predictive Modeling without Information Leakage : The emil Package for R

    Get PDF
    Data driven machine learning for predictive modeling problems (classification, regression, or survival analysis) typically involves a number of steps beginning with data preprocessing and ending with performance evaluation. A large number of packages providing tools for the individual steps are available for R, but there is a lack of tools for facilitating rigorous performance evaluation of the complete procedures assembled from them by means of cross-validation, bootstrap, or similar methods. Such a tool should strictly prevent test set observations from influencing model training and meta- parameter tuning, so- called information leakage, in order to not produce overly optimistic performance estimates. Here we present a new package for R denoted emil (evaluation of modeling without information leakage) that offers this form of performance evaluation. It provides a transparent and highly customizable framework for facilitating the assembly, execution, performance evaluation, and interpretation of complete procedures for classification, regression, and survival analysis. The components of package emil have been designed to be as modular and general as possible to allow users to combine, replace, and extend them if needed. Package emil was also developed with scalability in mind and has a small computational overhead, which is a key requirement for analyzing the very big data sets now available in fields like medicine, physics, and finance. First package emil's functionality and usage is explained. Then three specific application examples are presented to show its potential in terms of parallelization, customization for survival analysis, and development of ensemble models. Finally a brief comparison to similar software is provided

    Developer-Friendly and Computationally Efficient Predictive Modeling without Information Leakage : The emil Package for R

    No full text
    Data driven machine learning for predictive modeling problems (classification, regression, or survival analysis) typically involves a number of steps beginning with data preprocessing and ending with performance evaluation. A large number of packages providing tools for the individual steps are available for R, but there is a lack of tools for facilitating rigorous performance evaluation of the complete procedures assembled from them by means of cross-validation, bootstrap, or similar methods. Such a tool should strictly prevent test set observations from influencing model training and meta- parameter tuning, so- called information leakage, in order to not produce overly optimistic performance estimates. Here we present a new package for R denoted emil (evaluation of modeling without information leakage) that offers this form of performance evaluation. It provides a transparent and highly customizable framework for facilitating the assembly, execution, performance evaluation, and interpretation of complete procedures for classification, regression, and survival analysis. The components of package emil have been designed to be as modular and general as possible to allow users to combine, replace, and extend them if needed. Package emil was also developed with scalability in mind and has a small computational overhead, which is a key requirement for analyzing the very big data sets now available in fields like medicine, physics, and finance. First package emil's functionality and usage is explained. Then three specific application examples are presented to show its potential in terms of parallelization, customization for survival analysis, and development of ensemble models. Finally a brief comparison to similar software is provided

    CopyNumber450kCancer : baseline correction for accurate copy number calling from the 450k methylation array

    No full text
    The Illumina Infinium HumanMethylation450 BeadChip (450k) is widely used for the evaluation of DNA methylation levels in large-scale datasets, particularly in cancer. The 450k design allows copy number variant (CNV) calling using existing bioinformatics tools. However, in cancer samples, numerous large-scale aberrations cause shifting in the probe intensities and thereby may result in erroneous CNV calling. Therefore, a baseline correction process is needed. We suggest the maximum peak of probe segment density to correct the shift in the intensities in cancer samples
    corecore