Journal of Statistical Software

July 2018, Volume 85, Issue 13. doi: 10.18687/jss.v085.i13

Developer-Friendly and Computationally Efficient
Predictive Modeling without Information Leakage:
The emil Package for R

Christofer L. Backlin Mats G. Gustafsson
Uppsala University Uppsala University
Abstract

Data driven machine learning for predictive modeling problems (classification, regres-
sion, or survival analysis) typically involves a number of steps beginning with data pre-
processing and ending with performance evaluation. A large number of packages providing
tools for the individual steps are available for R, but there is a lack of tools for facilitat-
ing rigorous performance evaluation of the complete procedures assembled from them
by means of cross-validation, bootstrap, or similar methods. Such a tool should strictly
prevent test set observations from influencing model training and meta-parameter tun-
ing, so-called information leakage, in order to not produce overly optimistic performance
estimates.

Here we present a new package for R denoted emil (evaluation of modeling with-
out information leakage) that offers this form of performance evaluation. It provides a
transparent and highly customizable framework for facilitating the assembly, execution,
performance evaluation, and interpretation of complete procedures for classification, re-
gression, and survival analysis. The components of package emil have been designed to
be as modular and general as possible to allow users to combine, replace, and extend
them if needed. Package emil was also developed with scalability in mind and has a small
computational overhead, which is a key requirement for analyzing the very big data sets
now available in fields like medicine, physics, and finance.

First package emil’s functionality and usage is explained. Then three specific applica-
tion examples are presented to show its potential in terms of parallelization, customization
for survival analysis, and development of ensemble models. Finally a brief comparison to
similar software is provided.

Keywords: predictive modeling, machine learning, performance evaluation, resampling, high
performance computing.



https://doi.org/10.18637/jss.v085.i13

2 emil: Predictive Modeling without Information Leakage in R

1. Introduction

Data driven machine learning for predictive modeling problems (classification, regression,
and survival analysis) is employed in virtually all scientific domains and rapidly grows in
importance in the context of what is called “big data” (Snijders, Matzat, and Reips 2012; Wu,
Zhu, Wu, and Ding 2014). In this context a prediction model is a computable function f
that transforms an input feature vector x into a prediction y determined as y = f(z) where
y may have one or several dimensions. Usually the main purpose of a predictive modeling
exercise is to provide decision support in the form of actual predictions for new inputs of
interest as well as in the form of assigning importance to the features in the input vector
x. Predictive modeling typically involves the following three steps: (1) data pre-processing
including imputation of missing values, raw data transformations and/or feature selection; (2)
parameter fitting and model family selection including tuning of meta-parameters or model
selection by an information theory based criterion, like AIC (Akaike 1973) or BIC (Schwarz
1978); and (3) prediction using the selected final prediction model.

When performing predictive modeling using a particular computational procedure consisting of
a pre-processing part (step 1 above) and a modeling procedure part (step 2 above), a problem
of fundamental interest is to characterize and quantify the overall prediction performance of
the models produced by the procedure. This is because the computational procedure used
might be too liberal or too constrained for the underlying prediction problem of interest.
If too liberal the final prediction models produced will have been fitted too well to the
design/training examples used (overfitting) and will therefore perform poorly on new external
test examples. If the computational procedure would be too constrained the models would
not be flexible enough to enable sufficiently close fitting to the design examples. Typically the
overall prediction performance, especially the expected average performance of the prediction
models produced, is estimated using testing on external examples that have not at all been part
of the pre-processing or the modeling procedure. In order to obtain a reliable characterization
that is not dependent on one particular split of the available data into one set of examples for
training and one set of examples for external performance estimation, usually cross-validation
(CV), or some other resampling method, is employed to build multiple prediction models,
each tested on independent external test examples (Hastie, Tibshirani, and Friedman 2001;
Varma and Simon 2006; Lawless and Yuan 2010). If test examples are allowed to influence
the modeling because they are not excluded from pre-processing and the modeling procedure
there is a risk of positively biasing the resulting performance estimate. We will refer to such
influences as information leaks. Examples of such leaks include imputation or feature selection
methods applied to an entire data set prior to resampling based performance evaluation.

When performing the kind of performance evaluation of a computational procedure used for
predictive modeling described above, it is desirable to use an existing computational framework
that takes care of the tedious but straight-forward book-keeping aspects, yet is flexible enough
to allow for easy customization and comparison to alternative solutions, while not adding
an unnecessarily large computational or memory burden. The package emil (Bécklin and
Gustafsson 2018) for R (R Core Team 2018) is designed to achieve precisely this. It provides a
simple, transparent, light-weight, and well documented framework encompassing all of the
aspects inherent to data driven machine learning based predictive modeling. Rather than
providing a high level analysis platform rich in pre-defined features package emil strives
towards being an application programming interface (API) with highly reusable components



Journal of Statistical Software 3

and consistent syntax and data structures. This results in analysis scripts that are easy to
read, low in maintenance, and easy to debug. Package emil does however include several
methods for each analysis step that can be used to do analyses out-of-the-box and serve as
examples of how to implement customized methods. The usability of package emil has recently
been appreciated in a master of science engineering program course focused on multivariate
data analysis as well as in a few master thesis projects.

First we present an overview of the functionality of the emil package, followed by three
application examples, and lastly we provide a comparison to the caret package (Kuhn 2008;
Kuhn et al. 2018) which provides partially overlapping functionality. Functions used in
the examples from packages other than emil and caret are summarized in Table 1. For a
comprehensive guide to all aspects of the emil package’s usage, please refer to its included
documentation (accessible from within R by entering 7emil). Package emil is publicly available
for download at the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=emil, and all code and data required to run the examples and benchmarking is
publicly available at http://github.com/Molmed/Backlin-2017.

1.1. Notation and terminology

In this work the following notation and terminology is used (as partly outlined by Hastie et al.
2001). The structure and adjustable parameters of a prediction model f yielding predictions
y = f(x) is said to be “fitted” to a dataset. A dataset consists of a matrix or data frame
x of size n x p, where n denotes individual “observations” and p denotes “features”, and a
vector of “response values” y of length n. The words “train” and “design” commonly used
elsewhere have the same meaning as “fit” and can be used interchangeably. Such a relationship

bR EN14 M.

is also the case for the groups of words “observations”, “objects”, and “examples”; “variables”,
“attributes”, “independent variables”, and “predictor variables”; and “response”, “response
variable” and “dependent variable”. Also note that x and y may have a different structure
elsewhere. For example, £ may be a collection of documents stored as text and y may be a

matrix with multiple response values for each observation.

Often the fitting procedure used has one or several meta-parameters that also need to be
selected based on the data available. One classical example is ridge regression (Hastie et al.
2001) where the resulting prediction model can be written as the linear model y = wj x
where the coefficient vector wy is determined using a fitting procedure that involves a penalty
(regularization) term having an influence determined by a meta-parameter 6. Another classical
example is the number of latent variables when performing linear regression using the partial
least squares algorithm (PLS, Hastie et al. 2001). Also in this case a linear prediction model
Yy = w,;ra? is built where the coefficient vector wy is determined using ordinary least squares
fitting in a space constrained by k latent variables where k£ has to be tuned/selected based on

the set of training examples available.

In addition to the kind of meta-parameters discussed above, in many cases one also has to
choose between different model classes. For example, in regression modeling it is common to
choose between prediction models that are linear (i.e., have the form y = w ' z), prediction
models based on standard binary regression trees (RTs), prediction models based on k-nearest-
neighbor regression (kNNR), and models based on multilayer perceptron artificial neural
networks (MLPANNSs) (Hastie et al. 2001). For each of these classes there are meta-parameters
to tune (for linear models see above, for RTs the depth of the tree, for KNNR one has to choose


https://CRAN.R-project.org/package=emil
https://CRAN.R-project.org/package=emil
http://github.com/Molmed/Backlin-2017

4 emil: Predictive Modeling without Information Leakage in R

Function Package Description

YA A magrittr Forward-pipe operator. Like the Unix pipe operator | it
passes all left hand side contents as an argument to the right
hand side function. For example x %>% f is evaluated as

f(x) and x %>% £ %>% glarg = "value") is evaluated as
g(f(x), arg = "value").

aes ggplot2  Generates aesthetic mappings that control how the contents
of data are presented in a ‘ggplot’ object.

c base Concatenate multiple values or vectors into a single vector.

do.call base Use the elements of a list as arguments to a function

call, e.g., do.call(f, x) wherex = list(x1l, x2, x3) ex-
ecutes f(x1, x2, x3). This is useful if the structure of x

may vary.
exprs Biobase Extracts gene expression data from a Bioconductor dataset.
findInterval base Given a set of breakpoints and a set of elements, return

the interval indexes in which each element occurs, e.g.,
findInterval(c(4, 6, 8), 7.83) is 2.
geom_point gegplot2  Adds a layer of scatter plot points to a ‘ggplot’ object.

ggplot ggplot2  Creates a ‘ggplot’ object onto which layers of graphics can
be added e.g., using geom_point.

gl base Generate a categorical vector containing class labels.

lapply base Applies a function to each element of a list and returns the
output as a new list.

Map base Similar to lapply but accepts multiple lists of input values
to be processed together.

mclapply parallel  Executes a function on each item of a list in parallel.

pData Biobase Extract phenotype data from a Bioconductor dataset.

select dplyr Selects a subset of columns in a data frame. The emil package

implements a class specific version of select for its own result
objects (Section 2.6).

spread tidyr Converts data frames from long format to wide format.

t base Matrix transpose operator.

table base Counts the number of occurrences of each value in a vector.

tempdir base Path to a directory where temporary results can be saved
(created automatically by R).

try base Wrapper that catches and silences errors in a block of code
instead of breaking execution.

tryCatch base Similar to try but provides more error handling capabilities.

with base Evaluates an expression with the variables of a data frame.

This is only for improving code readability, since with(d, x
+ y + z) is sometimes preferable to d$x + d$y + d$z.

Table 1: Key functions used in the code examples of the paper but which are not part of the
packages emil and caret. The packages base, parallel, and stats are included in the standard
distribution of R (R Core Team 2018). The package Biobase (Huber et al. 2015) contains the
core functionality of the Bioconductor platform (Gentleman et al. 2004), which is widely used
to do bioinformatic analyses.



Journal of Statistical Software 5

the value of k, for MLPANN one has to choose the number of hidden layers and hidden nodes)
and on top of this one also has to choose the class of the final model, which is to be used for
prediction of unknown examples and for interpretation of important variables etc. Therefore
one should regard the variable used to encode the model class as another meta-parameter that
has to be tuned based on the training examples available. Thus the “fitting” of the structure
and the parameters of one prediction model to data can also be viewed and interpreted as
the result of a fitting procedure that selects one model (defined by its specific structure and
associated parameter values) in the space of all conceivable models spanned by all plausible
structures and parameter values.

2. Functionality

The main objective of the emil package is to build and evaluate different computational
procedures for predictive modeling using resampling based testing. It is particularly developed
for providing unbiased performance estimation, an important task when the number of samples
is small compared to the number of features and/or compared to the number of model
parameters including alternative model structures. Under such conditions there is always a
serious risk of overfitting models (structure and parameters) as well as making overly optimistic
performance estimates. As already mentioned, most fitting algorithms contain meta-parameters
for controlling overall model complexity, e.g., the amount of penalty (regularization) in ridge
regression or the depth of a regression tree, apart from the ordinary parameters obtained as a
consequence of the choice of meta-parameter value, i.e., the actual coefficients in the resulting
linear prediction model (ridge regression) and the variables and corresponding split points in
the regression tree. These meta-parameters are typically also tuned with resampling based
testing and it is important to keep this exercise strictly inside the training set, requiring a
two-layered resampling scheme, for combined tuning and unbiased performance estimation
(Hastie et al. 2001; Varma and Simon 2006; Lawless and Yuan 2010).

Consider the task where a data set D is to be pre-processed according to a pre-processing
algorithm A and then used by an modeling procedure B(6), defined by a user-defined meta-
parameter 6, to create a prediction model fy. Returning to the ridge regression example above
as one illustration, € is known as the ridge/penalty parameter and controls the amount of
regularization used when determining the optimal coefficient vector wy. In order to obtain
an unbiased estimate/characterization of the performance of such a modeling procedure
one needs to perform a two-layered resampling procedure outlined in Algorithm 1. Such a
procedure inevitably requires many data subsets to be generated and processed, and it is of
vital importance to make sure that no test set is allowed to influence the contents of any
training set, including all data pre-processing steps, in order to not bias the final performance
estimate.

Although A generally is an unsupervised method that only serves to prepare the features of
a data set for analysis, such as a normalization, imputation or compression technique, it is
important to acknowledge the fact that it is the combination of A and B(#) that constitutes
the complete computational procedure for producing a model from a raw data set. There
is no theoretical reason for separating A and B(0) into different entities, but in practice it
is convenient to do so to enable different implementations of A and B(f) to be used and
combined independently of one another. This also allows the results from A to be reused
together with a different B(6), which can save a lot of time if A is a time consuming algorithm.



emil: Predictive Modeling without Information Leakage in R

Algorithm 1 Two-layered resampling.

loop for performance evaluation.
Randomly split D into mutually exclusive subsets Dy (fitting) and D; (testing).
loop for meta-parameter tuning.
Randomly split Dy into mutually exclusive subsets Dg and Dy;.
Define a normalization transform ng using the algorithm A applied to Dy alone.
for each possible value of the meta-parameter § do
Fit one model fp using B(f) applied to the transformed data set ng(Dyr).
Estimate the performance of fy using the transformed test set ng(Dy).
end for
return Performance estimates for all parameter values.
end loop
Determine the most promising value 8* among the tested values for 6.
Define a normalization transform n; using the algorithm A applied to Dy alone.
Fit one model fp using B(6*) applied to the transformed data set n(Dy).
Estimate the performance of fp- using the transformed test set ny(D;).
end loop
return Performance estimates for each random split.

In the emil framework, A is referred to as pre-processing method and B as modeling procedure.

The emil function evaluate can be used to perform the work of Algorithm 1, and the code
below presents an example of how it can be used (referred to as the main example throughout
Section 2). The different concepts needed to understand how it works are explained in
Sections 2.1-2.4, how to work with the results produced is explained in Sections 2.5-2.7, and

some notes on scalability are provided in Section 2.8.

R> data("prostate", package = "ElemStatLearn")
R> cv <- resample(method = "crossvalidation", y = prostate$lpsa,

+

nfold = 3, nrepeat = 2)

R> result <- evaluate(procedure = "lasso", x = prostate[1:8],

+ + + + + + +

y = prostate$lpsa, resample = cv,
pre_process = function(x, y, fold) {
data <- pre_split(x, y, fold)
data <- pre_scale(data, center = TRUE)
data <- pre_convert(data, x_fun = as.matrix)
return(data)

39

R> get_performance (result)

D O WN -

fold error

replfoldl 0.735
replfold2 0.767
replfold3 0.742
rep2foldl 0.807
rep2fold2 0.758
rep2fold3 0.669



Journal of Statistical Software

Briefly, the code of the example sets up a LASSO regression procedure (Tibshirani 1996) and
evaluates its performance using 3-fold CV repeated two times. The result obtained with the
get_performance function is the estimated root mean square error obtained in each fold.

2.1. Data

By default a data set is represented in package emil as a matrix or data frame x with
observations as rows and features as columns, accompanied by a response vector y. There
are no restrictions on the types of data x and y may contain as long as appropriate modeling
functions are used to handle them. The most common case is that y is either a numeric
implying regression, a factor implying classification, or time-to-event vector of class ‘Surv’
implying survival analysis, but any type of response could, in principle, be modeled. To
improve compatibility with other packages, data can alternatively be supplied as x holding
the entire data set and y holding a formula or character scalar marking which feature to be
used as response.

The data set of the main example, prostate, was first presented by Stamey et al. (1989) and
is available in the R package ElemStatLearn (Halvorsen 2015). It contains the level of prostate
specific antigen (PSA) in 97 men prior to prostate cancer treatment by radical prostatectomy,
together with 8 clinical features that the model building is to be based upon.

2.2. Resampling

Resampling schemes are used to define how the data set is to be split and used for model
fitting and testing. Such schemes are created with the function resample that takes a method
and the response vector y. This vector y is needed to allow the resampling method to generate
folds that are balanced with respect to the different classes (i.e., preserving their relative
frequencies).

R> cv <- resample(method = "crossvalidation", y = prostate$lpsa,

+ nrepeat = 2, nfold = 3)
R> head(cv)

replfoldl replfold2 replfold3 rep2foldl rep2fold2 rep2fold3

1 FALSE TRUE TRUE TRUE TRUE FALSE
2 TRUE FALSE TRUE TRUE FALSE TRUE
3 TRUE TRUE FALSE FALSE TRUE TRUE
4 TRUE TRUE FALSE FALSE TRUE TRUE
5 TRUE TRUE FALSE TRUE FALSE TRUE
6 TRUE FALSE TRUE FALSE TRUE TRUE

Each column in the output above represents one fold, describing which observations are to be
used for training (TRUE) and testing (FALSE) for a particular split of the data set. Internally,
resample calls the function resample_crossvalidation to generate the scheme and adds a
couple of additional attributes to it (not visible in the code above) to allow inner resampling
schemes to be generated from it (see ?subresample). Inner resampling schemes are needed
for meta-parameter tuning in each of the folds in the outer loop.



8 emil: Predictive Modeling without Information Leakage in R

The user may implement and use a custom resampling algorithm by creating a function
resample_my_method and then call it with resample(method = "my_method", y) (see
?resample for details).

2.3. Splitting and pre-processing

Given a fold defining how the data is to be split the user can now proceed to carry out data
pre-processing. This is typically done using a sequence of functions that represent the various
actions and transformations the user wants to apply to the data set. The sequence is started
with pre_split that sifts out the relevant data subsets and passes them on in a list that can
be modified by the subsequent functions. The code below first splits the data, then scales all
features to have mean 0 and unit standard deviation to allow for fair comparison between
them, and finally converts x to a matrix rather than a data frame since the LASSO method
used in the main example requires that form:

R> prostate_split <- pre_split(x = prostate[1:8], y = prostate$lpsa,
+ fold = cv[[1]])

R> prostate_split <- pre_scale(prostate_split, center = TRUE)

R> prostate_split <- pre_convert(prostate_split, x_fun = as.matrix)
R> prostate_split

Pre-processed data set “prostate[1:8]  of 8 features.
64 observations for model fitting,
33 observations for model evaluation.

Equivalently, the pipe notation %>% introduced in the magrittr package (Milton Bache and
Wickham 2014) can be used to express the sequence of pre-processing functions as a single
chained command, which is less bulky and arguably easier to read (see Table 1 for details):

R> prostate_split <-
+ pre_split(x = prostate[1:8], y = prostate$lpsa, fold = cv[[11]) %>
+ pre_scale 7>}, pre_convert(x_fun = as.matrix)

Package emil contains a number of pre-processing functions ready to be combined and new
ones can easily be written by the user (see ?pre_process). The pre_pca function performing
principal component analysis (PCA, Hastie et al. 2001, Chapter 14.5) constitutes a concise
example of how such a function should be defined:

R> pre_pca
function (data, ...)
{
pca <- prcomp(data$fit$x, ...)

data$fit$x <- pca$x
data$test$x <- predict(pca, data$test$x)
data

}

<environment: namespace:emil>



Journal of Statistical Software 9

In such well structured code it is easy to spot and correct any source of information leakage
between the fitting and testing data. The pre-processing routine can be passed to evaluate
using a wrapper function, as in the main example, or as a list of functions as shown here:

R> result <- evaluate(procedure = "lasso", x = prostate[1:8],
+ y = prostate$lpsa, resample = cv,

+ pre_process = list(pre_split, pre_scale,

+ function(data) pre_convert(data, x_fun = as.matrix)))

It is worth highlighting the fact that the data is only extracted and pre-processed right before
model fitting in order to avoid producing any unnecessary memory copies of the data (or
subsets of the data). This means that no outer datasets (Dy and D, in Algorithm 1) are
created until the parameter tuning is completed, producing at most two copies of the data set
simultaneously in memory.

2.4. Model fitting and testing

When evaluating a procedure using the evaluate function, models are automatically fitted
and tested according to the resampling scheme (Section 2.2). This means a collection of
models will be produced and tested, one per fold in the scheme. The user can however also
create and test individual models in the following way, where rmse denotes the calculation of
the root mean squared error:

R> model <- fit(procedure = "lasso", x = prostate_split$fit$x,

+ y = prostate_split$fit$y)

R> prediction <- predict(object = model, x = prostate_split$test$x)
R> rmse(prostate_split$test$y, prediction)

(1] 0.737

The prediction object is a list containing various quantities the user might be interested in
depending on the modeling method of choice, such as predicted class labels, estimated class
probabilities, or prediction intervals. Functions such as error_rate or roc_curve can then
be used to summarize the performance (see 7error_fun). Predictions from evaluate can be
tabulated with the function get_prediction.

R> head(get_prediction(result, resample = cv, format = "wide"))

id replfoldl replfold2 replfold3 rep2foldl rep2fold2 rep2fold3

1 1 0.965 NA NA NA NA 0.885
2 2 NA 1.073 NA NA 1.07 NA
3 3 NA NA 1.048 1.004 NA NA
4 4 NA NA 0.895 0.849 NA NA
5 5 NA NA 1.894 NA 1.92 NA
6 6 NA 0.991 NA 0.887 NA NA

The argument procedure to the function fit is the key to choosing or customizing modeling
algorithms. It takes an object of class ‘modeling_procedure’ created with the function



10 emil: Predictive Modeling without Information Leakage in R

modeling_procedure or alternatively any object that can be coerced to that class, such as
the character "lasso" used in the main example. Information on which methods are available
in package emil and other installed compatible packages can be found in the manual page
7?list_method.

R> rf <- modeling procedure(method = "randomForest",
+ parameter = list(mtry = c(1, 3, 6)))
R> rf

“randomForest”™ modeling procedure.

model fitting function: yes
prediction function: yes
feature importance function: yes
individual error function: no

number of parameter sets to tune over: 3
tuned: no

The result is a list of wrapper functions that define how to fit and evaluate models of a
particular method and what parameter values to use. To tune a parameter simply supply
all values to consider in a list or vector (see ?modeling_procedure for different options). If
multiple parameters are to be tuned, all combinations are automatically tested unless otherwise
specified. Parameter tuning statistics can then be extracted with the function get_tuning.

R> tuned_rf <- tune(rf, x = prostate[1:8], y = prostate$lpsa, resample = cv)
R> get_tuning(tuned_rf)

parameter_set mtry replfoldl replfold2 replfold3 rep2foldl rep2fold2

1 1 1 0.694 0.878 0.877 0.967 0.773

2 3 0.633 0.845 0.814 0.913 0.723

3 3 6 0.649 0.811 0.773 0.908 0.727
rep2fold3
1 0.697
2 0.673
3 0.670

Isolating all wrapper functions in a single object removes any ambiguity of what function is
actually called when performing the work, as the user is free to inspect them, e.g., with the
functions print or page.

R> rf$fit_fun

function (x, y, ...)

{
nice_require("randomForest")
tryCatch(randomForest: :randomForest(x, y, ...),



Journal of Statistical Software

error = function(e) {
if (any(is.na(x))) {
stop("Random forest does not accept any missing values.")

}

else {
stop(e)

}

9
}

<environment: namespace:emil>

It also enables the user to easily change plug-in functions (see 7extension) and facilitates
debugging with the standard facilities of R. The example below invokes the debugger when
the function used for fitting is called for the first time. From the progress log, printed by
setting .verbose = TRUE (see Section 2.8 for more details), the user can tell that it happened
in the inner loop of the two-layered resampling procedure (Algorithm 1), the parameter values
and data to be used to fit this particular model can be inspected, and the code can be stepped
through line by line while looking for problems.

R> debugonce(rf$fit_fun)

R> rf_result <- evaluate(procedure = rf, x = prostate[1:8],

+ y = prostate$lpsa, resample = cv,

+ pre_process = list(pre_split, pre_scale), .verbose = TRUE)

08 jul 09:51 Evaluating modeling performance...
08 jul 09:51 Repeat 1, fold 1

08 jul 09:51 Tuning parameters...
08 jul 09:51 Evaluating modeling performance...
08 jul 09:51 Repeat 1, fold 1
08 jul 09:51 Extracting fitting and testing datasets.
08 jul 09:51 Fitting randomForest (1)
debugging in: p$fit_fun(x, y, ...)
debug: {
nice_require("randomForest")
tryCatch(randomForest: :randomForest(x, y, ...),

error = function(e) {
if (any(is.na(x))) {
stop("Random forest does not accept any missing values.")

}

else {
stop(e)

}

i)

11



12 emil: Predictive Modeling without Information Leakage in R

2.5. Model interpretation

Package emil contains a number of functions for extracting and summarizing results produced
during the modeling process. Apart from the functions get_performance, get_prediction,
and get_tuning introduced earlier there is also a function get_importance for extracting
feature importance estimates.

R> lasso <- modeling procedure("lasso")

R> model <- fit(procedure = lasso, x = prostate_split$fit$x,
+ y = prostate_split$fit$y)

R> get_importance (model)

feature coefficient

1 1lcavol 0.715
2 lweight 0.100
3 age -0.135
4 1bph 0.246
5 svi 0.315
6 lcp 0.000
7 gleason 0.000
8  pgg4db 0.000

How such estimates are calculated depends on the modeling procedure used. In the case of
LASSO above the importance estimates are simply the fitted model coefficients wy, mentioned
in Section 1.1. To see exactly how they were obtained the user can view the code of the
procedure specific importance function by entering the following command (output not shown
due to its length).

R> lasso$importance_fun

The reason get_importance should be called on a fitted model rather that the procedure itself
is that the final model parameters are typically needed to estimate the features’ importance.
The model also contains a copy of the procedure used to create it, allowing it to find the
correct extraction function.

2.6. Downstream analysis

The functions presented in Sections 2.2-2.5 constitute the base of the emil framework. Figure 1
provides a schematic overview of them (blue and green) together with the types of input and
output they require and produce (yellow). For most applications the objects can be thought of
as belonging to one of three groups: those related to the data, those related to the modeling,
and those that are end results. Data and result objects are generally represented as data
frames that can directly be passed to high level data manipulation and plotting tools, such
as dplyr (Wickham and Frangois 2017), tidyr (Wickham 2014), ggplot2 (Wickham 2009), or
lattice (Sarkar 2008). The modeling objects are all lists to allow for any type of contents
that the user might want to create during the modeling, including elements that have not
been foreseen by the authors of package emil. Internally, the modeling functions reuse the
components of Figure 1 (see Figure 2) giving all modeling objects a consistent structure.



Journal of Statistical Software

resample Data functions
data Data objects

X

| modeling_procedure | modeling_result Modeling objects

7 T
- / - -
e / - -
7 /o s Result functions
- s X
=77 -
/,” / e
" | 4 e
<get_importance§‘ <get_performance> get_prediction
| tuning | | importance | | performance |(—[ error_fun prediction |

Result objects

Figure 1: A schematic overview of the most common functions (blue) and object types (yellow)
that the user works with in the emil package. The green rounded squares mark functions
for which there are several alternatives from which the user must choose. Solid incoming
arrows to a node mark required data objects for producing the output marked by the single
outgoing arrow and dashed incoming arrows mark optional inputs, e.g., £it requires data
and a modeling procedure to create a model. As another example, performance estimates
of a procedure can be obtained by calling the function get_performance on an object of
class modeling_result created by evaluate. evaluate in turn requires data, a resampling
scheme, and a modeling procedure.

This allows partial results to be easily retrieved and condensed, typically using the functions
subtree or select, which is an emil specific extension to the dplyr function select.

For example, objects of class ‘modeling_result’ are nested lists where each top-level-element
corresponds to a fold in the resampling scheme. All top-level-elements contain the same types
of information (a model, predictions, a performance estimate, etc.) and these are of the same
form as returned by fit or predict etc. These are referred to as second-level-elements. The
following commands can be used to extract only the performance estimates.

R> subtree(x = result, TRUE, "error")

replfoldl replfold2 replfold3 rep2foldl rep2fold2 rep2fold3d
0.737 0.768 0.752 0.817 0.759 0.671

13



14 emil: Predictive Modeling without Information Leakage in R

(untuned) .
modeling_procedure data | data | | resample | | modeling_procedure | Run parameters
(.save, .cores, etc.)

Fit Evaluate
} Y A (R Y__
: “ ‘
tune pre_process 1 . 1
| Internal functions !
S J
(tuned) (processed training)
modeling_procedure data

fit

Y

(procesz:(tiatestlng) |
predict get_importance
mode(l?nngtu;l%dc)edure | prediction | | importance |

error_fun
Tupe

evaluate
performance

modeling_result
Y YY Y

modeling_result
Y A

(tuned)
modeling_procedure

Figure 2: The inner structure of the functions fit, tune, and evaluate. The same components
that the user has access to are reused internally, making the framework produce results and
logs that are consistent in structure and easy to process and follow. The fit function creates
predictive models by first tuning any untuned meta-parameters contained in the modeling
procedure and then calling its fitting function. The tune function selects meta-parameter
values by splitting a modeling procedure into separate procedures with fixed meta-parameter
values, evaluating all of them and selecting the one that performs the best. The evaluate
function asserts how well the complete computational procedure including pre-processing and
modeling does. evaluate performs the work outlined in its box once per fold of the resampling
scheme.

The first unnamed argument! to subtree above specifies which top-level-elements of result
that should be selected (TRUE meaning all folds), and the second unnamed argument specifies

'The second and third arguments are unnamed since they lack an assignment operator (=) and a left-hand-
side name. Unnamed arguments are assigned to the appropriate variable inside the function based on their
position in the call. Due to the recursive structure of subtree and use of the dots argument “...” the indexing
arguments to subtree are typically not named.



Journal of Statistical Software 15

that what second-level-elements are to be selected (only elements named "error").

The select function works in a similar way but always produces a data frame?, which can be
directly parsed by the high level data manipulation tools mentioned above.

R> select(result, Fold = TRUE, RMSE = "error")

Fold RMSE
1 replfoldl 0.737
2 replfold2 0.768
3 replfold3 0.752
4 rep2foldl 0.817
5 rep2fold2 0.759
6 rep2fold3 0.671

In cases where the conversion from list element to data frame is not obvious a function returning
a data frame can be used instead of an indexing vector or value. Let us return to the main
example for a demonstration of this functionality. The modeling procedure internally used
the glmnet package (Friedman, Hastie, and Tibshirani 2010) for fitting LASSO models, but
rather than using the meta-parameter tuning framework of package emil to tune its complexity
parameter A\, the fitting function calls a native tuning function provided in the glmnet package
(for improved computational efficiency). Because of this, the function get_tuning will not be
able to extract the tuning statistics of A\, but this can easily be done using select.

R> internal_tuning <- select(result, Fold = TRUE, '"model", "model",
+ function(m) data.frame(Lambda = m$lambda, TuningRMSE = m$cvm))
R> head(internal_tuning)

Fold Lambda TuningRMSE

1 replfoldl 0.950 1.55
2 replfoldl 0.865 1.44
3 replfoldl 0.789 1.30
4 replfoldl 0.719 1.19
5 replfoldl 0.655 1.09
6 replfoldl 0.597 1.02

R> library("ggplot2")
R> ggplot(internal_tuning, aes(x = Lambda, y = TuningRMSE, group = Fold)) +
+ geom_line()

The plot of the above code is presented in Figure 3.

The result functions introduced earlier, such as get_performance, can also be used with
select (see the example in the end of Section 2.7 for a demonstration).

2Named arguments to select will produce columns in the resulting data frame and non-named arguments
will continue the traversing without producing any columns.



16 emil: Predictive Modeling without Information Leakage in R

1.50 -
1.25 -

1.00 -

TuningRMSE

0.75 -

0.50 -
0.00 0.25 0.50 0.75 1.00
Lambda

Figure 3: The figure created by the select and ggplot2 commands of Section 2.6.

2.7. Procedure comparison

Comparing different modeling procedures on the same problem is a common task in predictive
modeling. Since the resampling scheme and pre-processing steps must be the same for all
modeling procedures to allow for a fair comparison a lot of time may be saved by not repeating
it. All modeling functions therefore allow the user to supply multiple modeling procedures, in
which case the same splitting and pre-processing chain is used for all.

If the user wishes to compare LASSO regression to ridge regression on the task set up in the
main example, the only change needed in the code is to supply multiple procedures in a vector
or list.

R> comparison <- evaluate(

+ procedure = c(LASSO = "lasso", RR = "ridge_regression"),
+ x = prostate[1:8], y = prostate$lpsa, resample = cv,

+ pre_process = function(x, y, fold) {

+ pre_split(x, y, fold) }>), pre_scale J>,

+ pre_convert (x_fun = as.matrix)

+

§9)

R> get_performance (comparison, format = "wide")

fold LASSO RR

1 replfoldl 0.737 0.718
2 replfold2 0.769 0.762
3 replfold3 0.752 0.748
4 rep2foldl 0.807 0.833
5 rep2fold2 0.761 0.743
6 rep2fold3 0.663 0.652

The example above also illustrates how procedures can be named, by setting c¢(LASSO =
"lasso", RR = "ridge_regression"). The names (i.e., "LASSO" and "RR") are preserved
throughout the logs and results, and are automatically guessed from the procedures themselves
if not given by the user.



Journal of Statistical Software

2.8. Scalability

The emil package offers several tools that can help the user perform time-consuming and
resource intensive computations: parallelization, checkpointing and an advanced progress
logging system.

Multicore parallelization is controlled using the argument .cores to evaluate, specifying how
many cores to use. In the current version of package emil, cluster parallelization must be set
up manually as demonstrated below. Although the setup is quite simple, we thought it best to
leave it to the user since cluster interfaces may differ between platforms, but more assistance
to the user may be added in the future. It is also worth mentioning that cluster and multicore
parallelization may be performed together, which is useful when analyzing large datasets with
multiple computers (the code below uses 4 computers with 8 cores each).

R> library("parallel")

R> cluster <- makeCluster(spec = 4)

R> clusterEvalQ(cluster, library("emil"))

R> clusterExport(cluster, "prostate')

my_evaluate <- function(fold) {
my_pre_process <- function(x, y, fold) {

pre_split(x, y, fold) 7>) pre_scale }>}
pre_convert(x_fun = as.matrix)

)
\%

}

evaluate (procedure = "lasso", x = prostate[1:8], y = prostate$lpsa,
resample = fold, pre_process = my_pre_process, .cores = 8,
.checkpoint_dir = tempdir())

+ + + + + + + +

}
R> result <- parLapply(cluster, cv, my_evaluate)

Checkpointing (see argument on the second to last row above) is a technique for saving the
results of each fold to disk as soon as it is completed, which reduces the need to redo work
in case the execution is interrupted. When working on large computer clusters the user is
typically required to request resources for a limited time ahead of execution, and since it is
usually difficult to accurately estimate the running time beforehand this feature can rescue
much results in case the running time was underestimated.

Finally, logging can be enabled by setting the argument .verbose = TRUE to fit, tune, or
evaluate. The logging system uses the emil functions log_message and indent which can
also be utilized by the user to create nicely formatted progress reports in time consuming
custom written fitting functions.

2.9. Distribution of user created methods

Custom methods for generating resampling schemes, pre-processing, fitting models, estimating

17

performance etc. can be written and distributed in separate packages or plain R script files.

The internal documentation page 7extension provides details on how the functions should be
written to be fully compatible with the framework. Once a package extending package emil is
installed and loaded its contained methods will automatically be detected by package emil.



18 emil: Predictive Modeling without Information Leakage in R

3. Application examples

In this section three applications are presented, using the emil package with custom pre-
processing and fitting functions to show its flexibility. Section 3.1 shows an implementation
of random forest with parallelization at a different level than what package emil provides
by default. Section 3.2 demonstrates a method to combine PCA and proportional hazards
regression (referred to as Cox regression below, Cox 1972) to solve a high dimensional survival
analysis task. Section 3.3 demonstrates a method to create an ensemble classifier on the fly by
combining already implemented classification methods.

3.1. An alternative parallelization routine

How to perform a modeling task in the most resource efficient way is not the same across all
modeling algorithms and applications. Ensemble methods such as random forest provide a
nice illustration of this dilemma through the fact that parallelization may be performed on
different levels, which leads to different memory requirements and computation times.

Consider the following two ways to parallelize the emil framework on a high performance
machine with 16 CPU cores. The aim is to evaluate a procedure in which random forest
classifiers containing 8000 decision trees are trained and used for classification by 8-fold
cross-validation repeated 4 times (32 folds in total). The default implementation executes
the 32 folds in parallel, distributed on the 16 cores, where each core fits all 8000 trees of
2 forests (Figure 4 top). The alternative implementation executes the 32 folds sequentially,
but distributes the trees of each fold so that each core fits 500 trees of 32 forests (Figure 4
bottom).

First the standard sequential solution (i.e., no parallelization) is set up and tested as a
reference:

R> x <- matrix(rnorm(100 * 10000), 100, 10000)

R> y <- gl(2, 50)

R> cv <- resample("crossvalidation", y, nrepeat = 4, nfold = 8)

R> proc <- modeling procedure("randomForest", param = list(ntree = 8000))
R> system.time(result_seq <- evaluate(procedure = proc, x = x, y = y,

+ resample = cv))

This yielded the following results where the user element denotes the CPU time in seconds
used by the R session, system denotes the CPU time used by the operating system on behalf
of the R session (e.g., writing files, forking processes, looking at the system clock etc.), and
elapsed denotes the real world time used to complete the work.

user system elapsed
5878.389 0.170 5874.807

Next, the standard parallel implementation is set up and tested:

R> system.time(result_parl <- evaluate(procedure = proc, x = x, y = ¥,
+ resample = cv, .cores = 16))

By spawning multiple R processes elapsed time is greatly reduced at the expense of a slight
increase in user and system times.



Journal of Statistical Software

Train Fit all Test
Start | model1l [ 8000 trees > model 1 N Finish
evaluation evaluation
\ 3 Train 3 Fit all 3 Test H
\ model 2 8000 trees model 2
Train 3 Fit all 3 Test
model 32 8000 trees model 32
Fit first Fit first
Start 500 trees |\l oot 500 trees |\l oot Test
evaluation model 1 model 2 model 32
Fit next Fit next
v 500 trees v 500 trees v
Train Train Finish
model 1 model 2 evaluation
\ 3 Fit last \ 3 Fit last
500 trees 500 trees

Figure 4: Two alternatives for parallelizing the same analysis presented in Section 3.1. Serial
steps are orange and parallel steps are yellow. The task involves fitting and testing 32 random

19

forest models containing 8000 decision trees each (one forest per fold of a 4 x 8 CV scheme).

Top: The first implementation fits all 32 models in parallel, and fits the 8000 trees of each
sequentially. Bottom: The second implementation trains the models sequentially, but splits
up the 8000 trees on the CPU cores, producing more but smaller subtasks.

user system elapsed
6216.822 1.624 524.425

Finally, the alternative parallel implementation is set up and tested by replacing the fitting
function of the sequential process. The variable ntree below is a vector holding the number
of trees to be fitted by each core:

R> library("parallel")

R> options(mc.cores = 16)

R> par_proc <- proc

R> par_proc$fit_fun <- function(..., ntree) {

+ nc <- getOption("mc.cores")

+ ntree <- table(findInterval(l:ntree - 1, ntree / nc * 1:nc))

+ forests <- mclapply(ntree, function(nt) randomForest(..., ntree = nt))
+ do.call(combine, forests)

+ }

R> system.time(result_par2 <- evaluate(procedure = par_proc, X = X, y = Y,
+ resample = cv))

This time the elapsed time is somewhat increased and the user and system times are increased



20 emil: Predictive Modeling without Information Leakage in R

further, since the alternative implementation produces many more parallelized subtasks with
more overhead than the standard parallel implementation.

user system elapsed
6618.851 33.675 617.991

On the other hand, the alternative implementation required much less memory since all
sub-processes can work on the same pair of training and test sets, whereas the standard
parallel implementation needs to keep 16 unique pairs in memory simultaneously. When
working with large data sets this can be a trade-off well worth making.

3.2. High dimensional survival modeling

The next example is based on a publicly available gene expression data set with breast cancer
tumor samples (Miller et al. 2005). The following analysis was not used in the original paper,
but was invented ad hoc to demonstrate the emil framework. The data set contained expression
levels of 18822 genes measured with 44928 probes across 251 samples. The response modeled
was the time to relapse. Cox regression is commonly used for survival analysis problems, but
since this data set has far more features than observations, and Cox regression lacks feature
selection or regularization, the Cox regression algorithm will not be able to find a unique
solution. To remedy this, PCA was used to pre-process the data set to compress it to a
manageable number of features. However, since not all patients received the same treatment
an additional treatment feature must also be included for stratification, but should of course
not be part of the PCA.

First the data set is loaded and prepared for the analysis. The package breastCancerUPP
(Schroeder, Haibe-Kains, Culhane, Sotiriou, Bontempi, and Quackenbush 2011) is used to
load the data set upp, which is attached to the workspace by calling data("upp", package =
"breastCancerUPP"). The same object contains both experimental and clinical /phenotypic
data, which are accessed using the Biobase functions exprs and pData.

R> library("Biobase")

R> data("upp", package = "breastCancerUPP")

R> x <- data.frame(treatment = pData(upp)$treatment, t(exprs(upp)))
R> y <- with(pData(upp), Surv(t.rfs, e.rfs))

Next, the custom functions for pre-processing and modeling are defined:

R> pre_cox_pca <- function(data) {
pca <- prcomp(data$fit$x[-1])
data$fit$x <- data.frame(treatment = data$fit$x$treatment, pca$x)
data$test$x <- data.frame(treatment = data$test$x$treatment,
predict(pca, data$test$x[-1]))
data
}
R> pca_cox <- modeling procedure(
+ method = "pca-cox",
+ fit_fun = function(x, y, nfeat) {
+ terms <- c("treatment", sprintf("PCJ)i", seq_len(nfeat)))

+ + + + + +



Journal of Statistical Software 21

formula <- as.formula(sprintf("y ~ Js",
paste(terms, collapse = " + ")))
coxph(formula, x)
}, predict_fun = predict_coxph,
param = list(nfeat = c(0, 1, 2, 3, 5, 9, 15)))

+ + + + +

Finally, the procedure is carried out and evaluated:

R> ho <- resample("holdout", y, nfold = 10, fraction = 1/4,

+ subset = complete.cases(x))
R> result <- evaluate(procedure = pca_cox, X = X, y = y, resample = ho,
+ pre_process = list(pre_split, pre_cox_pca))

3.3. Implementation of a custom ensemble classifier

This application example serves to illustrate the reusability of emil’s components by imple-
menting a custom ensemble classification method. The fitting function is defined taking both
a data set and a list of modeling procedures to fit models from. Using bootstrapping (Efron
1979), different random subsets of the training data are defined for each procedure, and each
pair of data subset (fold) and procedure is analyzed together using the Map function. The
try statement below is needed to safe-guard against failing model training, which might
occasionally occur depending on what procedures are given to the ensemble.

R> fit_ensemble <- function(x, y, procedure_list) {
samples <- resample("bootstrap", y, nfold = length(procedure_list))
Map (function(procedure, fold) {
try(fit (procedure, x[index_fit(fold), ], ylindex_fit(fold)]),
silent = TRUE)
}, procedure_list, samples)

}

+ + + + + +

The function for using a fitted ensemble to make predictions consists of several steps, explained
in detail below.

R> library("tidyr")
R> library("dplyr")
R> predict_ensemble <- function(object, x) {

P

vote <- do.call(rbind, prediction)

vote <- count(vote, id, prediction)

vote <- spread(vote, prediction, n, fill = 0)

+ prediction <- lapply(object, function(model) {
+ if (inherits(model, "model")) {

+ data.frame(id = seq_len(nrow(x)),

+ prediction = predict(model, x)$prediction)
+ } else {

+ NULL

+ }

+

+

+

+



22 emil: Predictive Modeling without Information Leakage in R

rpart - 4‘ I l—

method

qda -

error

Figure 5: Estimated performance of the ensemble method presented in Section 3.3 and the
three types of methods incorporated into it. The z-axis shows estimated error rate.

n_model <- sum(sapply(object, inherits, "model"))
return(list(
prediction = factor(apply(vote[-2], 1, which.max),
levels = 2:ncol(vote) - 1, labels = colnames(vote)[-1]),
vote = as.data.frame(vote[-1] / n_model)
))
}

+ + + + + + +

The first step is to let all the classifiers of the ensemble (object) make individual predictions
for all observations in the test set (x). For each classifier the if-inherits statement checks
whether it was trained successfully or caught by the try function. Class predictions are
returned if it was successfully trained and NULL is returned if not.

The second step is to aggregate all the classifiers’ predictions into votes for the different classes.
This is done by putting all predictions into a single large data frame, using do.call("rbind",
prediction), and then pass it on to count for summarizing, and spread for reshaping.

The final step is to return the class with the most votes for each observation (the element
prediction in the returned list). The voting statistics are also returned in case the user
would be interested.

Using the above functions an ensemble classifier is defined containing 100 linear discriminants
(1da), 100 quadratic discriminants (qda, Venables and Ripley 2002), and 100 decision trees
(rpart, Therneau, Atkinson, and Ripley 2015).

R> ensemble <- modeling procedure(method = "ensemble",
+ parameter = list(procedure = list(rep(c("lda", "gda", "rpart"),
+ each = 100))))

The performances of the ensemble classifiers built are then estimated using cross-validation on
a data set containing sonar frequency profiles (60 features) of 208 objects that were either
rocks or metal cylinders, first published by Gorman and Sejnowski (1988). The data set was
later published in the UCI Machine Learning Repository (Newman, Hettich, Blake, and Merz
1998) and on CRAN in the package mlbench (Leisch and Dimitriadou 2010). The performance
of the methods incorporated into the ensemble was finally estimated and compared to that of
the ensemble (Figure 5).

R> data("Sonar", package = "mlbench")



Journal of Statistical Software 23

R> cv <- resample("crossvalidation", Sonar$Class, nrepeat = 3, nfold = 5)
R> comparison <- evaluate(procedure = list("lda", "qda", "rpart", ensemble),
+ x = Sonar, y = "Class", resample = cv)

R> perf <- get_performance(comparison, format = "long")

R> ggplot(perf, aes(x = method, y = error)) + geom_boxplot() + coord_£flip()

4. Comparison to similar software

There are a number of tools available for automating predictive modeling, from graphical
workbenches such as SAS Enterprise Miner (SAS Institute Inc. 2013), the Konstanz Information
Miner (KNIME, Berthold et al. 2008) and RapidMiner (RapidMiner Inc. 2013) to packages
for different programming languages such as caret (Kuhn 2008; Kuhn et al. 2018) for R,
scikit-learn (Pedregosa et al. 2011) for Python (Van Rossum et al. 2011), and PRTools (Duin
et al. 2007) for MATLAB (The MathWorks Inc. 2017). Packages emil and caret partially
overlap in functionality, and have actually been developed independently in parallel for a few
years, but both also have some unique features. This section serves to highlight the differences
between them.

4.1. Performance evaluation of complete procedures

The most notable difference between packages emil and caret is that package emil focuses on
evaluating whole computational procedures whereas package caret is only focused on training
and tuning them. During training package caret does use resampling based performance
evaluation to tune meta-parameters (the inner loop of Algorithm 1), but the package does not
contain any function for unbiased performance estimation of the entire procedure. It might
be tempting to use the performance estimates obtained during tuning as a substitute, but
since the tuning procedure always selects the best performing parameter values there is a risk
that the corresponding performance estimate is positively biased (Varma and Simon 2006;
Lawless and Yuan 2010). Users of the caret package may of course implement the outer loop
of Algorithm 1 themselves to obtain more reliable performance estimates, but this will lead to
suboptimal memory usage given the way package caret is implemented.

The memory efficiency and computation time of packages emil (version 2.2.8) and caret (version
6.0-79) was studied on five tasks involving commonly used predictive modeling techniques.
Each task was performed in five replicates and monitored using the Syrupy tool (Sukumaran
2015) that repeatedly polled the Unix function ps once per second for the given R processes.
Figure 6 shows the computation time and average memory usage over all the replicates. The
“ALL” tasks used the data set presented in Section 3.2 with the goal of predicting the samples’
estrogen-receptor status from their gene expression profiles, while the “Sonar” task used the
data presented in Section 3.3. Task specific details were as follows:

e The “ALL-kNN-forest” task consisted of performing kNN-imputation in combination
with random forest classification (Breiman 2001) with a pre-selected meta-parameter
value, including evaluation by 5-fold cross-validation repeated 3 times.

e The “ALL-PAM?” task consisted of performing nearest shrunken centroids classification
(Tibshirani, Hastie, Narasimhan, and Chu 2002, NSC) using the pamr package (Hastie,



24 emil: Predictive Modeling without Information Leakage in R
ALL-kNN-forest ALL-PAM ALL-PCA-tree
1.6GB{ ‘ 1.1 GB 1 1.7 GB 1 :
0 RAVIN ‘ 3 y WM
| ‘ ““h}\“ J ”
“ 0.4 GB 4 H “
__ 04GB- 0.4 GB A V
0
@ 00GB4! ; il oocGB{! i1oocB4! ! !
T 00:00 15:41 00:00 05:47 00:00 05:37
>
S ALL-SVM Sonar-LogitBoost
§ 2068+ 241.1 MB 1
2 Method
f caret
| — emil
0.4 GB 4 37.7 MB A ' \
0.0GB ! 24l ooms! A s
00:00 13:49 00:00 00:32

Time (h:mm:ss)

Figure 6: Comparison of memory usage and computation time between packages emil and
caret on the 5 benchmarking tasks described in Section 4.1. All curves are averages over five
replicates performed sequentially on a high performance machine. Each replicate was run in a
separate R process. Garbage collection was performed prior to the fitting of each model and a
3 second waiting period was added to the end of each job to ensure the memory profiler had
time to get a final reading. The gray horizontal lines mark the memory requirement of only
loading the data set. The small vertical tick marks on the z-axis mark the completion time
of individual replicates. The y-axis shows the amount of non-swapped RAM used by the R
processes, known as resident set size (RSS).

Tibshirani, Narasimhan, and Chu 2014), including tuning the meta-parameter threshold
and evaluation by 5-fold cross-validation repeated 3 times.

The “ALL-PCA-tree” task consisted of performing PCA pre-processing, selecting the first
20 components, and training decision trees (Breiman, Friedman, Olshen, and Stone 1984)
using the rpart package (Therneau et al. 2015), including tuning the meta-parameter
maxdepth and evaluation by 3-fold cross-validation repeated twice.

The “ALL-SVM” task consisted of performing support vector machine (SVM) classifica-
tion with polynomial kernels using the kernlab package (Karatzoglou, Smola, Hornik,
and Zeileis 2004), including tuning the meta-parameter degree and evaluation by 3-fold
cross-validation repeated twice.

The “Sonar-LogitBoost” task consisted of training a single logit boost model (Dettling
and Biithlmann 2003) using the caTools package (Tuszynski 2014), including tuning of
its meta-parameter nIter and evaluation by external testing on a single test set. This
task was taken from package caret’s online manual (Kuhn 2015).

Package emil required less memory than package caret on all tasks except “ALL-PAM”, mainly
because package emil avoids creating some unnecessary in-memory copies of the data set.



Journal of Statistical Software

When analyzing large data sets (on the order of several gigabytes) it is crucially important to
avoid unnecessary copies of the data set, as it may considerably slow down the analysis or
sometimes inhibit it entirely. The issue is less serious on the relatively small data sets analyzed
in the benchmarking study but the existence of the effect is still apparent, especially when
using pre-processing steps such as kNN imputation or PCA. Package emil’s core functions
fit, tune, and evaluate are designed to never modify the data set in any way, but to leave
that to the user-defined pre-processing functions. Since the pre-processing functions operate
in a sequential manner on the training and test sets exclusively package emil always leaves the
original copy of the data set untouched. This holds true even if a method incorporated into
the emil framework requires data in a non-standard form, such as the pamr method for NSC
classification. Data should be supplied to the pamr.train function as a list of two elements

25

x and y where x is a matrix with observations as rows and y is a matching response vector.

This can easily be accomplished by using a custom pre-processing function?.

R> pre_pamr <- function(data) {

data$fit$x <- list(x = t(data$fit$x), y = data$fit$y)
data$fit$y <- NULL

data$test$x <- t(data$test$x)

data

+ + + + +

}

R> y <- factor(findInterval (prostate$lpsa, quantile(prostate$lpsa, 1:2/3)),
+ labels = c("low", "intermediate", "high"))

R> cv <- resample("crossvalidation", y, nfold = 5, nrep = 1)

R> result <- evaluate(procedure = "pamr", x = prostate[1:8], y =y,

+ resample = cv, pre_process = list(pre_split, pre_pamr))

If the data set instead had been reshaped within the training function, an additional in-memory
copy would have been created.

Some of the advantages of both packages can be combined through calling the emil function
evaluate with a modeling procedure with method = "caret". The fitting function will then
pass on the data and parameters to the caret function train for tuning and fitting. This may
add some additional memory overhead compared to running package emil on its own, but
provides a quick way of adding the outer loop of Algorithm 1 to any existing code written for
package caret. The example below shows how to define a modeling procedure using package
caret to train random forest models®.

R> modeling procedure (method = '"caret", parameter = list(

+ method = "rf", ntree = 10000,

+ trControl = list(trainControl (method = "repeatedcv", number = 5,
+ repeats = 5, returnData = FALSE, allowParallel = TRUE,

+ verboseIter = TRUE)),

+ tuneGrid = list(data.frame(mtry = c(10, 50, 200)))))

3The pre_pamr function actually used in the package also contains additional steps but these have been
omitted for clarity.

4The object returned from trainControl is a list in itself requiring it to be wrapped in an outer list to
be interpreted as a single entity. If not, all the elements of the trainControl object would be interpreted as
separate values to try for the trControl parameter, which does not work. The same principle also applies to
tuneGrid.



26 emil: Predictive Modeling without Information Leakage in R

4.2. Other functionality

In addition to the differences highlighted in the previous section, the emil and caret packages
both provide some functionality with superior implementation or not present in the other
package. The advantages of package emil include a more flexible data pre-processing system
(Section 2.3), check-pointing and a more developed progress logging system (Section 2.8), and
learning curve analyzes (see ?learning_curve, Duda, Hart, and Stork 2000). The advantages
of package caret include a larger number of methods ready to be used by the user, developed
parallelization capabilities, and adaptive resampling, which is a technique for reducing the
meta-parameter search space as the resampling based testing progresses (Maron and Moore
1997; Shen, Welch, and Hughes-Oliver 2011).

5. Concluding remarks

When using machine learning-based tools for prediction modeling problems, rigorous per-
formance evaluation is critical in order to obtained unbiased information about the true
performance of the prediction models built (Varma and Simon 2006). Resampling based
methods such as cross-validation and repeated holdout are useful tools for this but can be
misleading unless the test sets by these procedures are excluded from the entire modeling
procedure and only used for the final performance evaluation step. The emil package strictly
adheres to this principle and provides a versatile toolbox for implementing and evaluating
customized modeling procedures for predictive modeling problems in a statistically rigorous
way.

Since the applications of predictive modeling are incredibly diverse, the emil framework is
designed to be as general and flexible as possible while at the same time staying transparent
and light weight. In this paper and the accompanying benchmarking study we have shown
several examples of how the components can be combined and reused in different settings to
implement alternative routines for pre-processing, parallelization, and parameter tuning, as
well as creating custom ensemble classifiers while at the same time staying computationally
efficient. This is possible thanks to the APT like design of the framework.

While great care has been taken to make the emil package as resource efficient as possible, it
should be noted that the memory requirement and computation time of a modeling procedure
is heavily dependent on which methods are incorporated into it. The gains by using the emil
package will differ from case to case, but a substantial reduction in development time can
nevertheless be achieved by not having to re-implement the general analysis framework.

Potential drawbacks of the emil framework is that since the user is empowered to re-implement
many features it might require a higher level of programming proficiency than similar packages,
for example when setting up cluster parallelization. There are also points where memory
efficiency could be improved further, such as delaying the pre-processing of the test sets until
the training is completed, but since the sum of the training and test sets never exceeds the
size of the entire data set (unless oversampling is used) this would only provide a minor
improvement.



Journal of Statistical Software 27

Acknowledgments

This work was supported by grants from the Swedish Foundation for Strategic Research
(RBc08-008) as well as the Swedish Research Council (621-2008-5854). The computations were
performed on resources provided by SNIC through the Uppsala Multidisciplinary Center for
Advanced Computational Science (UPPMAX). We thank Elias Castegren at the Department
of Information Technology, Uppsala University for providing feedback on implementation
design and terminology.

CB and MG conceived of the approach and discussed the computational results as they

appeared. CB implemented the package and drafted the manuscript. MG supervised the
project and wrote the final manuscript together with CB.

References

Akaike H (1973). “Information Theory and an Extension of the Maximum Likelihood Principle.”
In BN Petrov, F Csaki (eds.), 2nd International Symposium on Information Theory, pp.
267-281.

Bécklin CL, Gustafsson MG (2018). emil: Evaluation of Modeling without Information Leakage.
R package version 2.2.10, URL https://CRAN.R-project.org/package=emil.

Berthold MR, Cebron N, Dill F, Gabriel TR, Koétter T, Meinl T, Ohl P, Sieb C, Thiel
K, Wiswedel B (2008). “KNIME: The Konstanz Information Miner.” In C Preisach,
H Burkhardt, L. Schmidt-Thieme, R Decker (eds.), Data Analysis, Machine Learning
and Applications, Studies in Classification, Data Analysis, and Knowledge Organization.
Springer-Verlag.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5-32. doi:10.1023/a:
1010933404324.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees.
1st edition. Wadsworth.

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society
B, 34(2), 187-220.

Dettling M, Bithlmann P (2003). “Boosting for Tumor Classification with Gene Expression
Data.” Bioinformatics, 19(9), 1061-1069. doi:10.1093/bioinformatics/btf867.

Duda RO, Hart PE, Stork DG (2000). Pattern Classification. 2nd edition. John Wiley & Sons.

Duin RPW, Juszczak P, Paclik P, Pekalska E, De Ridder D, Tax DMJ, Verzakov S (2007).
“PRTools4.1, A MATLAB Toolbox for Pattern Recognition.” URL http://prtools.org.

Efron B (1979). “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics,
7(1), 1-26. doi:10.1214/a0s/1176344552.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1-22. doi:10.
18637/jss.v033.101.


https://CRAN.R-project.org/package=emil
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1093/bioinformatics/btf867
http://prtools.org
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01

28 emil: Predictive Modeling without Information Leakage in R

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge
Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler
M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004).
“Bioconductor: Open Software Development for Computational Biology and Bioinformatics.”
Genome Biology, 5, R80. doi:10.1186/gb-2004-5-10-r80.

Gorman RP, Sejnowski TJ (1988). “Analysis of Hidden Units in a Layered Network Trained
to Classify Sonar Targets.” Neural Networks, 1(1), 75-89. doi:10.1016/0893-6080(88)
90023-8.

Halvorsen K (2015). ElemStatLearn: Data Sets, Functions and Examples from the Book:
“The Elements of Statistical Learning, Data Mining, Inference, and Prediction” by Trevor
Hastie, Robert Tibshirani and Jerome Friedman. R package version 2015.6.26, URL https:
//CRAN.R-project.org/package=ElemStatLearn.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning. 1st edition.
Springer-Verlag. doi:10.1007/978-0-387-21606-5.

Hastie T, Tibshirani R, Narasimhan B, Chu G (2014). pamr: PAM: Prediction Analysis for
Microarrays. R package version 1.55, URL https://CRAN.R-project.org/package=panr.

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis
S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love
MI, MacDonald J, Obenchain V, Ole§ AK, Pages H, Reyes A, Shannon P, Smyth GK,
Tenenbaum D, Waldron L, Morgan M (2015). “Orchestrating High-Throughput Genomic
Analysis with Bioconductor.” Nature Methods, 12(2), 115-121. doi:10.1038/nmeth.3252.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab — An S4 Package for Kernel
Methods in R” Journal of Statistical Software, 11(9), 1-20. doi:10.18637/jss.v011.1009.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of
Statistical Software, 28(5), 1-26. doi:10.18637/jss.v028.105.

Kuhn M (2015). “The caret Package: Using Your Own Model in train.” http://topepo.
github.io/caret/custom_models.html. Accessed 2015-06-18.

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T (2018). caret:
Classification and Regression Training. R package version 6.0-79, URL https://CRAN.
R-project.org/package=caret.

Lawless JF, Yuan Y (2010). “Estimation of Prediction Error for Survival Models.” Statistics
in Medicine, 29(2), 262-272. doi:10.1002/sim.3758.

Leisch F, Dimitriadou E (2010). mlbench: Machine Learning Benchmark Problems. R package
version 2.1-1, URL https://CRAN.R-project.org/package=mlbench.

Maron O, Moore AW (1997). “The Racing Algorithm: Model Selection for Lazy Learn-
ers” In DW Aha (ed.), Lazy Learning, pp. 193-225. Springer-Verlag. doi:10.1007/
978-94-017-2053-3_8.


https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1016/0893-6080(88)90023-8
https://doi.org/10.1016/0893-6080(88)90023-8
https://CRAN.R-project.org/package=ElemStatLearn
https://CRAN.R-project.org/package=ElemStatLearn
https://doi.org/10.1007/978-0-387-21606-5
https://CRAN.R-project.org/package=pamr
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.18637/jss.v028.i05
http://topepo.github.io/caret/custom_models.html
http://topepo.github.io/caret/custom_models.html
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1002/sim.3758
https://CRAN.R-project.org/package=mlbench
https://doi.org/10.1007/978-94-017-2053-3_8
https://doi.org/10.1007/978-94-017-2053-3_8

Journal of Statistical Software 29

Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S,
Liu ET, Bergh J (2005). “An Expression Signature for P53 Status in Human Breast Cancer
Predicts Mutation Status, Transcriptional Effects, and Patient Survival.” Proceedings of
the National Academy of Sciences of the United States of America, 102(38), 13550-13555.
doi:10.1073/pnas.0506230102.

Milton Bache S, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package
version 1.5, URL https://CRAN.R-project.org/package=magrittr.

Newman DJ, Hettich S, Blake CL, Merz CJ (1998). “UCI Repository of Machine Learning
Databases.” URL https://www.ics.uci.edu/~mlearn/MLRepository.html.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer
P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E (2011). “scikit-Learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825-2830.

RapidMiner Inc (2013). RapidMiner Studio, Version 6. Cambridge. URL http://www.
rapidminer.com/.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
URL http://1lmdvr.R-Forge.R-project.org/.

SAS Institute Inc (2013). SAS Enterprise Miner, Version 13.1. URL http://www.sas.com/.

Schroeder M, Haibe-Kains B, Culhane A, Sotiriou C, Bontempi G, Quackenbush J (2011).
breastCancerUPP: Gene Ezpression Dataset Published by Miller et al. [2005] (UPP). doi:
10.18129/B9.bioc.breastCancerUPP. R package version 1.0.5.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461-464. doi:10.1214/a0s/1176344136.

Shen H, Welch WJ, Hughes-Oliver JM (2011). “Efficient, Adaptive Cross-Validation for
Tuning and Comparing Models, with Application to Drug Discovery.” The Annals of Applied
Statistics, 5(4), 2668-2687. doi:10.1214/11-aoas491.

Snijders C, Matzat U, Reips UD (2012). ““Big Data”: Big Gaps of Knowledge in the Field of
Internet.” International Journal of Internet Science, 1(7), 1-5.

Stamey TA, Kabalin JN, McNeal JE, Johnstone IM, Freiha F, Redwine EA, Yang N (1989).
“Prostate Specific Antigen in the Diagnosis and Treatment of Adenocarcinoma of the Prostate.
II. Radical Prostatectomy Treated Patients.” The Journal of Urology, 141(5), 1076-1083.
doi:10.1016/s0022-5347(17)41175-x.

Sukumaran J (2015). “Syrupy: System Resource Usage Profiler.” https://github.com/
jeetsukumaran/Syrupy. Commit: 2d6e963d03233388afb9cafd5360435e66557dd9.

The MathWorks Inc (2017). MATLAB — The Language of Technical Computing, Version
R2017b. Natick. URL http://www.mathworks.com/products/matlab/.


https://doi.org/10.1073/pnas.0506230102
https://CRAN.R-project.org/package=magrittr
https://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.rapidminer.com/
http://www.rapidminer.com/
https://www.R-project.org/
http://lmdvr.R-Forge.R-project.org/
http://www.sas.com/
https://doi.org/10.18129/B9.bioc.breastCancerUPP
https://doi.org/10.18129/B9.bioc.breastCancerUPP
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/11-aoas491
https://doi.org/10.1016/s0022-5347(17)41175-x
https://github.com/jeetsukumaran/Syrupy
https://github.com/jeetsukumaran/Syrupy
http://www.mathworks.com/products/matlab/

30 emil: Predictive Modeling without Information Leakage in R

Therneau T, Atkinson B, Ripley B (2015). rpart: Recursive Partitioning and Regression Trees.
R package version 4.1-9, URL https://CRAN.R-project.org/package=rpart.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, 58(1), 267-288.

Tibshirani R, Hastie T, Narasimhan B, Chu G (2002). “Diagnosis of Multiple Cancer Types by
Shrunken Centroids of Gene Expression.” Proceedings of the National Academy of Sciences
of the United States of America, 99(10), 6567-6572. doi:10.1073/pnas.082099299.

Tuszynski J (2014). caTools: Tools — Moving Window Statistics, GIF, Base64, ROC, AUC,
etc. R package version 1.17.1, URL https://CRAN.R-project.org/package=caTools.

Van Rossum G, et al. (2011). Python Programming Language. URL http://www.python.org/.

Varma S, Simon R (2006). “Bias in Error Estimation When Using Cross-Validation for Model
Selection.” BMC' Bioinformatics, 7(91). doi:10.1186/1471-2105-7-91.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag,
New York. URL http://www.stats.ox.ac.uk/pub/MASS4.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
URL http://ggplot2.org/.

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59(10), 1-23. doi:
10.18637/jss.v059.110.

Wickham H, Francois R (2017). dplyr: A Grammar of Data Manipulation. R package version
0.7.4, URL https://CRAN.R-project.org/package=dplyr.

Wu X, Zhu X, Wu GQ, Ding W (2014). “Data Mining with Big Data.” IEEE Transactions on
Knowledge and Data Engineering, 26(1), 97-107. doi:10.1109/tkde.2013.109.

Affiliation:

Christofer L. Bécklin

Uppsala University, Department of Medical Sciences
Cancer Pharmacology and Computational Medicine
Uppsala Academic Hospital

Entrance 61, floor 3

751 85 Uppsala, Sweden

E-mail: emil@christofer.backlin.se

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
July 2018, Volume 85, Issue 13 Submitted: 2014-05-11

doi:10.18637/jss.v085.113 Accepted: 2017-01-10



https://CRAN.R-project.org/package=rpart
https://doi.org/10.1073/pnas.082099299
https://CRAN.R-project.org/package=caTools
http://www.python.org/
https://doi.org/10.1186/1471-2105-7-91
http://www.stats.ox.ac.uk/pub/MASS4
http://ggplot2.org/
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1109/tkde.2013.109
mailto:emil@christofer.backlin.se
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v085.i13

	Introduction
	Notation and terminology

	Functionality
	Data
	Resampling
	Splitting and pre-processing
	Model fitting and testing
	Model interpretation
	Downstream analysis
	Procedure comparison
	Scalability
	Distribution of user created methods

	Application examples
	An alternative parallelization routine
	High dimensional survival modeling
	Implementation of a custom ensemble classifier

	Comparison to similar software
	Performance evaluation of complete procedures
	Other functionality

	Concluding remarks

