1,264 research outputs found

    Electronic nematic susceptibility of iron-based superconductors

    Get PDF
    We review our recent experimental results on the electronic nematic phase in electron- and hole-doped BaFe2_2As2_2 and FeSe. The nematic susceptibility is extracted from shear-modulus data (obtained using a three-point-bending method in a capacitance dilatometer) using Landau theory and is compared to the nematic susceptibility obtained from elastoresistivity and Raman data. FeSe is particularly interesting in this context, because of a large nematic, i.e., a structurally distorted but paramagnetic, region in its phase diagram. Scaling of the nematic susceptibility with the spin lattice relaxation rate from NMR, as predicted by the spin-nematic theory, is found in both electron- and hole-doped BaFe2_2As2_2, but not in FeSe. The intricate relationship of the nematic susceptibility to spin and orbital degrees of freedom is discussed.Comment: Invited review article for a special issue on Fe-based superconductors in Comptes Rendus Physiqu

    Nematicity, magnetism and superconductivity in FeSe

    Get PDF
    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, TcT_\mathrm{c}, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.Comment: Topical Review submitted to Journal of Physics: Condensed Matte

    Bounds on the basic physical parameters for anisotropic compact general relativistic objects

    Get PDF
    We derive upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with given anisotropy does exist. Anisotropic compact stellar type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum

    NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    Get PDF
    We present 77^{77}Se-NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, TsT_{\rm s}. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. These NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev. B rapid communicatio

    Editorial: Nematicity in iron-based superconductors

    Get PDF
    corecore