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We review our recent experimental results on the electronic nematic phase in electron-
and hole-doped BaFe2As2 and FeSe. The nematic susceptibility is extracted from shear-
modulus data (obtained using a three-point-bending method in a capacitance dilatometer) 
using Landau theory and is compared to the nematic susceptibility obtained from 
elastoresistivity and Raman data. FeSe is particularly interesting in this context, because of 
a large nematic, i.e., a structurally distorted but paramagnetic, region in its phase diagram. 
Scaling of the nematic susceptibility with the spin lattice relaxation rate from NMR, as 
predicted by the spin-nematic theory, is found in both electron- and hole-doped BaFe2As2, 
but not in FeSe. The intricate relationship of the nematic susceptibility to spin and orbital 
degrees of freedom is discussed.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons dans cette revue nos récents résultats expérimentaux concernant la phase 
nématique électronique des composés BaFe2As2 dopés et FeSe. La susceptibilité nématique, 
extraite de nos mesures du module de cisaillement (obtenue par des essais de flexion trois 
points par dilatométrie capacitive) dans le cadre de la théorie de Landau, est comparée 
aux résultats obtenus par des mesures d’élastorésistivité et de spectroscopie Raman. FeSe 
est un composé particulièrement intéressant dans ce contexte car son diagramme de 
phase présente une large phase nématique i.e. une phase paramagnétique accompagnée 
d’une distorsion structurelle. La loi d’échelle reliant la susceptibilité nématique au taux 
de relaxation spin-réseau observé par RMN, prédite par la théorie nématique de spin, est 
observée pour les composés BaFe2As2 dopés en électrons et en trous. La relation complexe 
entre la susceptibilité nématique et les degrés de liberté orbitaux et de spin est discutée 
en détail.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

* Corresponding authors.
E-mail addresses: anna.boehmer@kit.edu (A.E. Böhmer), christoph.meingast@kit.edu (C. Meingast).

1 Now at Ames Laboratory/Iowa State University.
http://dx.doi.org/10.1016/j.crhy.2015.07.001
1631-0705/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crhy.2015.07.001
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:anna.boehmer@kit.edu
mailto:christoph.meingast@kit.edu
http://dx.doi.org/10.1016/j.crhy.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2015.07.001&domain=pdf


A.E. Böhmer, C. Meingast / C. R. Physique 17 (2016) 90–112 91
1. Introduction

Electronic nematic phases have recently attracted considerable attention, especially in connection with high-temperature 
superconductivity [1,2]. For these phases, the term “nematic”, which originally refers to a liquid-crystal phase, in which 
rotational symmetry is broken while translational symmetry is preserved, has been borrowed from its original context to 
describe a symmetry breaking due to electronic effects [3]. In the iron-based systems, the stripe-type antiferromagnetic 
phase [4–7], which occurs in close proximity to the superconducting phase, reduces the C4 rotational symmetry of the 
high-temperature tetragonal state to C2 (orthorhombic), which is referred to as Ising-nematic. This breaking of the sym-
metry is necessarily accompanied by an orthorhombic lattice distortion [8]. Simultaneous magnetic and structural phase 
transitions occur, for example, in underdoped Ba1−xKxFe2As2 [9], suggesting that the small lattice distortion (� 4 × 10−3) is 
simply induced by magnetoelastic coupling. However, it was observed early on that the (nearly [10]) concomitant magneto-
structural phase transition of the parent compound BaFe2As2 splits into two well-defined transitions upon Co substitution 
[11,12]. Neutron diffraction studies demonstrated that the structural transition temperature Ts is several K higher than the 
magnetic transition temperature TN [13,14]. Hence, there is a small region of an orthorhombic—i.e., “nematic”—but paramag-
netic phase in Ba(Fe1−xCox)2As2, which is also observed, e.g., in other transition-metal-doped 122-systems [15], in F-doped 
1111-compounds [16], and in Co-doped NaFeAs [17]. Intuitively, Ts > TN suggests that the structural instability is the pri-
mary one, even though scenarios in which the structural transition is nevertheless a consequence of magnetic interactions 
have been proposed soon after [18–21]. The observation certainly puts the simple picture of the orthorhombic distortion as 
a mere consequence of stripe-type antiferromagnetism into question and has sparked great interest in the nematic phase of 
the iron-based materials, including an intensive debate about its microscopic origin [2]. Of particular interest in this debate 
is FeSe, which undergoes a similar structural distortion as the other compounds, but does not order magnetically [22].

Here we review and discuss our recent measurements of the elastic shear modulus, which is shown to be a particularly 
sensitive probe of the incipient structural distortion and, hence, nematicity. In particular, we measured Young’s modulus 
using a novel three–point-bending setup in a capacitance dilatometer [23,24]. Young’s modulus along a specific direction 
is shown to reflect the shear modulus, which is the soft mode of the structural transition, i.e., it is expected to vanish at 
the transition. Assuming the existence of an electronic nematic order parameter driving the transition, as indicated by elas-
toresistivity measurements [25], the electronic nematic susceptibility can be inferred using a simple Landau theory. Results 
on three iron-based systems—electron-doped Ba(Fe1−xCox)2As2, hole-doped (Ba1−xKx)Fe2As2 and FeSe—are discussed and 
compared. These thermodynamic measurements alone cannot determine the origin (spin or orbital, localized or itinerant 
interactions) of the nematic susceptibility. We therefore compare our results with probes of the charge (electronic Raman 
scattering) and spin (nuclear magnetic resonance, NMR) degrees of freedom. In particular, we test a scaling relation of the 
nematic susceptibility with magnetic fluctuations, which are derived from NMR data. This scaling relation is obtained within 
the itinerant spin-nematic scenario [26], in which the structural transition is a direct consequence of strong magnetic fluc-
tuations. Throughout the article, we use the notation of the two-iron (or the tetragonal) unit cell, in which the structural 
distortion occurs in the B2g channel and is related to the elastic shear modulus C66 and Young’s modulus Y [110] .

The contribution is organized as follows. In the remaining part of this Introduction, we review previous experimental 
and theoretical works on nematicity, in particular as related to the softening of the shear modulus C66 above the structural 
transition. In the following, we detail how C66 can be linked to the nematic susceptibility using Landau theory (Section 2). 
In Section 3 we present briefly the three-point-bending technique and in Section 4 we show how the elastic data is influ-
enced by domain formation in the orthorhombic state using dynamical three-point-bending measurements on BaFe2As2. In 
Section 5 we present comprehensive shear-modulus data of Ba(Fe1−xCox)2As2 and (Ba1−xKx)Fe2As2 [23] and of FeSe [27]. 
The inferred nematic susceptibility of FeSe is shown to be remarkably similar to the one of underdoped BaFe2As2. Section 6
presents the comparison of our elastic data to elastoresistivity measurements and electronic Raman scattering. In Section 7
we show the scaling of the shear modulus with magnetic fluctuations, derived from NMR data, discussed within the itin-
erant spin-nematic scenario. This scaling is found to be well satisfied in both Ba(Fe1−xCox)2As2 [26] and (Ba1−xKx)Fe2As2, 
but seems to fail for FeSe. Finally, we present a summary and outlook in Section 8.

1.1. Electronic in-plane anisotropy

The anisotropic properties of the magnetic/nematic phase have been studied by various experimental techniques. An 
early observation of electronic in-plane anisotropy in the orthorhombic phase was a large a − b anisotropy of the resistivity 
in Ba(Fe1−xCox)2As2 (nearly a factor of 2) [28]. However, it was subsequently shown experimentally that this resistivity 
anisotropy strongly depends on the degree of disorder of the samples and the type of substitution [29–34]. Various theo-
retical works also place emphasis on the role of disorder in explaining these observations [35,33,36]. Strongly anisotropic 
defects in the orthorhombic state, which are a candidate to produce this resistivity anisotropy, were, indeed, observed using 
scanning tunneling microscopy [37–39] and recent measurements of the anisotropy of the Hall effect also point to a domi-
nating role of the carrier mobility anisotropy in creating the resistivity anisotropy [40]. However, optical conductivity studies 
show the importance of orbital anisotropy in addition to the anisotropy of scattering rates [41,30,42,43]. A recent work [44]
stresses, in particular, the importance of the anisotropy of the Drude weight, rather than scattering rate, for the resistivity 
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anisotropy, as was also indicated by disorder-dependent elastoresistivity measurements [45]. Similarly, early angle-resolved 
photo-emission spectroscopy (ARPES) measurements found a significant shift of the dxz (dyz) orbitals to lower (higher) en-
ergies below Ts [46], i.e., orbital order. These results have been addressed in various theoretical works [47–49]. Further, the 
thermopower was shown to have an even larger anisotropy than the resistivity in the orthorhombic state, arising from an 
interplay of anisotropic scattering and orbital polarization [50]. Nuclear magnetic resonance (NMR) [51] and inelastic neu-
tron scattering studies [52,53] show significant anisotropy of the spin dynamics also in the temperature region Ts > T > TN. 
Inelastic neutron scattering as a probe of nematicity is described in another contribution to this issue [54]. Altogether, the 
observed large electronic anisotropy in the presence of a rather small lattice distortion of δ = (a − b)/(a + b) < 0.4% sup-
ports the idea that an electronic order parameter, which has to be “nematic” by symmetry, drives the structural transition. 
To show this, the resistivity anisotropy induced by an externally imposed lattice distortion (applied to a sample via a piezo 
stack) was measured in Ref. [25]. It was found that, indeed, the susceptibility of an electronic nematic order parameter 
diverges on approaching Ts from above, in agreement with the assumption that it drives the structural transition. Simi-
larly, a study of the electronic relaxation dynamics using femtosecond-resolved polarimetry suggests that nematicity is an 
independent electronic degree of freedom [55].

In order to measure the in-plane anisotropy of various physical quantities, the crystals need to be detwinned, which 
can be accomplished by the application of a uniaxial stress along the tetragonal [110] direction, σ[110] [28,56] or, in some 
cases, by a high magnetic field [57,58]. An earlier review on detwinning and electronic in-plane anisotropy in the iron-based 
superconductors is given in Ref. [56]. However, the application of σ[110] also significantly smears out the structural transition 
and can induce a marked anisotropy of electronic properties even above Ts [28,59–62]. This strong sensitivity of the system 
to σ[110] already demonstrates a large nematic susceptibility and can be used to determine it quantitatively. The nematic 
susceptibility has been evaluated by various techniques, including the above-described strain-dependent resistivity [25], the 
stress-dependent optical reflectivity [42], the elastic shear modulus [23] and the Raman response [63].

1.2. Two theoretical scenarios—spins vs. orbitals

As to which electronic degrees of freedom, spin or orbital, underlie this electronic nematic order parameter, two main 
scenarios have been discussed. The first one [64–66] places emphasis on orbital degrees of freedom, in particular the 
iron dxz and dyz orbitals, which are degenerate in the high-symmetry tetragonal phase. The structural transition, in this 
scenario, occurs when these orbitals order and become inequivalent in energy. The nematic order parameter ϕ is then given 
by the difference in orbital occupation. Orbital order may trigger a secondary magnetic transition [64]. This model naturally 
explains why the structural transition occurs at a higher temperature than the magnetic transition, yet a magnetic transition 
does not necessarily follow the structural one within this orbital scenario.

On the other hand, magnetism is essential in the second scenario, where spin fluctuations are considered as the driving 
force for the structural transition. In this spin-nematic scenario, of which there is a localized [18,19] and an itinerant 
formulation [21,20,3], the primary instability is that of the stripe–type magnetic phase, with the ordering vector either 
Q 1 = (π, 0) or Q 2 = (0, π), in orthorhombic notation. This state has an additional degree of freedom with respect to, e.g., 
checkerboard-type antiferromagnetism, namely the orientation of the ferromagnetic stripes (i.e., whether the ordering vector 
is Q 1 or Q 2), and this is determined by the “spin-nematic” order parameter ϕ [21]. The calculations of Refs. [18,19,21] have 
shown that ϕ , and thus the orthorhombic distortion, can be finite at a higher temperature than the magnetic ordering 
temperature, explaining the observed sequence of phase transitions. The debate about whether orbital or magnetic degrees 
of freedom are “in the driver’s seat” of the structural transition has been reviewed in Ref. [2].

1.3. Extreme cases: orthorhombic distortion without magnetic order in FeSe and tetragonal magnetic phase in hole-doped BaFe2As2

In most iron-based materials, the onsets of magnetic ordering and the structural distortion occur very close to each other 
in the phase diagram, which indicates that they are strongly coupled and hampers the determination of the “driver” [2]. 
There are, however, two exceptions to this which have recently attracted a lot of attention. The first exception is the 11-type 
iron-based superconductor FeSe, which undergoes a tetragonal-to-orthorhombic structural phase transition at Ts ∼ 90 K, 
similar to that found in the underdoped 122 materials and with similar magnitude of the orthorhombic distortion [67,22,
27]. Yet, whereas this transition always occurs in proximity to stripe-type antiferromagnetic order in the 122 systems, no 
static magnetism was found in FeSe at ambient pressure [22,68]. However, an enhanced spin–lattice relaxation rate in NMR 
at low temperatures indicates the presence of strong spin fluctuations [69]. In contrast to the 122-type systems, phase-pure 
superconducting FeSe cannot be obtained by self-flux growth techniques. Recently however, high-quality single crystals were 
obtained using low-temperature vapor transport [70] or KCl/AlCl3 flux [71,72], enabling a multitude of experimental studies 
including those of Young’s modulus, NMR, elastoresistivity, ARPES and inelastic neutron scattering [27,73–79].

FeSe has a rich temperature–pressure phase diagram [67,80–82], which has recently been obtained in new comprehen-
siveness using resistivity measurements [83,84]. The structural transition is found to be suppressed by hydrostatic pressure 
at � 2 GPa. On the other hand, the low-temperature spin fluctuations are enhanced by pressure [69] and probably static 
magnetic order sets in above ∼ 1 GPa, with a subsequent increase in the value of TN [68,81,83]. Tc has a non-monotonic 
pressure dependence, increasing initially and reaching a local maximum at ∼ 0.8 GPa followed by a slight decrease [81–83]. 
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At higher pressures, Tc increases again and the onset of Tc reaches surprisingly 37 K at ∼ 7 GPa [85,86,67,80]. Recent in-
elastic neutron powder [78] and single-crystal [79] diffraction results suggest that magnetic fluctuations at ambient pressure 
occur around the same (π, 0) stripe-type wave vector as in the other iron-based compounds. These puzzling results have 
recently attracted considerable attention and have resulted in various theoretical scenarios [87–91].

The second exception where magnetic order and orthorhombic distortion do not closely follow each other is the 
C4-symmetric reentrant magnetic phase in Na-doped BaFe2As2 [92]. Within a certain range of Na content, the usual or-
thorhombic distortion first develops with the stripe-type magnetic order below TN, but then suddenly disappears within 
experimental resolution upon entering this phase. This observation was taken as evidence that magnetic degrees of free-
dom drive the structural phase transition (the spin-nematic scenario) because the existence of such a phase can hardly be 
reconciled with orbital order being a prerequisite for magnetism [92]. Yet, the detailed magnetic structure is still under 
intense study. Polarized neutron scattering indicates a spin-reorientation from in-plane to c-axis oriented and suggests that 
the magnetic structure might still be orthorhombic, while a truly tetragonal “2-Q” magnetic structure could not be ruled 
out [93]. Group theoretical analysis suggests that the question of who is in the driver’s seat may be solved by determin-
ing the pattern of magnetic and orbital order within this phase [94]. Further theoretical works [95,96] show that interplay 
between the two stripe-type magnetic ordering vectors Q 1 = (0, π) and Q 2 = (π, 0) can lead to the observed phase di-
agram. This putatively tetragonal magnetic phase was also reported in Na-doped SrFe2As2 [97] and in single crystals of 
K-doped BaFe2As2 [98], where the interplay with superconductivity was also studied. Measurements of the orthorhombic 
order parameter using capacitance dilatometry [98] of these samples yield an upper limit for the orthorhombic distortion of 
∼ 0.01 × 10−3 in the new magnetic phase of Ba1−xKxFe2As2, i.e. less than 1% of the value of δ in the stripe-type magnetic 
phase.

1.4. The elastic shear modulus—soft mode of the structural transition

It is clear that once a material undergoes the structural transition, all properties (e.g., lattice constants, orbital occupation 
or spin fluctuations) acquire in-plane anisotropy, which makes it difficult to distinguish between the two scenarios. As an 
alternative, the study of the susceptibility of the various quantities above the structural transition has been suggested as a 
possible viable approach to determine the driving force of the structural transition [25,26,2].

In proximity to the structural phase transition of the iron-based materials (which can be classified as pseudo-
proper ferroelastic [99,25]), the elastic shear modulus C66 is expected to grow soft. C66 was studied extensively in the 
Ba(Fe1−xCox)2As2 system using ultrasound [21,100,101,66,102], and these measurements indeed show that C66 is the soft 
mode of the structural transition, as expected from the symmetry of the lattice distortion. An ultrasound study on single-
crystalline FeSe [103] shows the same soft mode. Further, signatures of a behavior that was termed “structural quantum 
criticality” were found around optimal doping in the Ba(Fe1−xCox)2As2 system. Namely, the temperature and doping de-
pendence of the structural susceptibility S66 = C−1

66 , the inverse of the shear modulus, was found to resemble closely the 
magnetic susceptibility in proximity to a magnetic quantum critical point [101]. The elastic softening persists over a large 
part of the superconducting dome on the overdoped side, which makes the associated fluctuations a possible candidate 
for the pairing glue in the iron-based systems [23,65]. A pronounced hardening of C66 below the superconducting transi-
tion temperature Tc in optimally doped Ba(Fe1−xCox)2As2 was shown to reflect the competition between magnetism and 
superconductivity, because the structural distortion and magnetism are strongly coupled in this system [21].

2. Landau theory with bilinear strain-order parameter coupling

In the Landau theory of a second-order phase transition, a structural distortion can be induced by a bilinear coupling 
in the free energy between elastic strain ε and the primary (possibly electronic) order parameter ϕ . In the case of the 
iron-based materials, the structural distortion is given by δ = (a − b)/(a + b), or ε6 = ∂ux

∂ y + ∂u y
∂x , the relevant component 

of the elastic strain tensor, and ϕ is the electronic nematic order parameter. Note that the bilinear coupling between ε6
and ϕ is, indeed, only allowed if ϕ is “nematic”, i.e. if it breaks the four-fold rotational symmetry of the high-temperature 
phase. However, this phenomenological approach is independent of the microscopic origin of ϕ (spin or orbital). Due to the 
bilinear coupling, ε6 is a measure of ϕ , i.e. the two quantities are proportional to each other [21]. The stress–strain relation 
σ6 = C66ε6 in the tetragonal or orthorhombic system shows that the soft elastic mode is C66, i.e. a second-order structural 
phase transition occurs when C66 → 0.

The relation between the nematic susceptibility and C66 can be obtained by considering the free energy density [21,8,25]

F = F0 + 1

2
C66,0ε

2
6 − λε6ϕ + 1

2

(
χϕ

)−1
ϕ2 + B

4
ϕ4 (1)

Here, −λε6ϕ is the bilinear coupling term (with the coupling constant λ), 1
2 C66,0ε

2
6 is the bare elastic energy (i.e. without 

the coupling λ) and C66,0 is the bare elastic constant, which, by assumption, has no strong temperature dependence. The 
last two terms represent a Landau expansion in the nematic order parameter ϕ , with χϕ the bare nematic susceptibility 
and B > 0 the usual quartic coefficient of the Landau expansion. A second bilinearly coupled (nematic) order parameter 
can be included analogously to describe, e.g., the interplay between elastic, spin-nematic and orbital degrees of freedom, 
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Fig. 1. (a) Temperature dependence of the nematic susceptibility χϕ = 1/a(T − T0) (solid line) and the nematic susceptibility renormalized by bilinear 
coupling to the lattice χ̃ϕ = 1/a(T − T CW

s ) (dashed line) in a mean-field model. (b) Temperature dependence of the soft elastic mode C66 = (T − T CW
s )/(T −

T0) of the structural transition induced by this bilinear coupling between the strain component ε6 and the nematic order parameter ϕ , Eq. (1). The effect 
of the bilinear coupling is to increase the transition temperature from T0 to T CW

s . (c) shows the temperature dependence of C66 for a range of parameters 
λ2/aC66,0 = T CW

s − T0. The slope of C66 just above Ts is determined by the bilinear coupling strength λ.

as in Refs. [104,105]. Here, however, we restrict ourselves to only one nematic order parameter. In general, the effective, 
renormalized elastic constant C66 is given by [106,107]

C66 = d2 F

dε2
6

= ∂2 F

∂ε2
6

−
(

∂2 F

∂ε6∂ϕ

)2 (
∂2 F

∂ϕ2

)−1

(2)

because the condition that F is minimal with respect to both ε6 and ϕ couples the two order parameters. This results in 
[8,25]

C66 = C66,0 − λ2

(
χϕ

)−1 + 3Bϕ2
(3)

which reduces to C66 = C66,0 −λ2χϕ above the ordering temperature when ϕ = 0. Note that χϕ is also renormalized by the 
coupling λ and the effective nematic susceptibility χ̃ϕ is given by 

(
χ̃ϕ

)−1 = (
χϕ

)−1 − λ2/C66,0. Rewriting C66 in terms of 
χ̃ϕ , yields the expression of Ref. [21]:

1

C66
= 1

C66,0
+ λ2

C2
66,0

χ̃ϕ (4)

Note that Eq. (4) is not limited to a Landau expansion in ϕ and is actually valid more generally, as long as bilinear coupling 
to a harmonic lattice is considered [21]. Eqs. (3) and (4) show that we can access the nematic susceptibility χϕ and also χ̃ϕ

by measuring C66.
Before analyzing real data, we illustrate the expected behavior of the shear modulus in the above Landau theory. We 

assume a mean-field Curie–Weiss-type divergence of χϕ on approaching T0, which would be the transition temperature in 
the absence of coupling to the elastic strain,

χϕ = 1

a(T − T0)
(5)

This leads to the temperature dependence of the soft elastic mode in a mean-field case [107],

C66 = C66,0

(
T − T CW

s

T − T0

)
for T > T CW

s (6)

C66 = C66,0

(
2(T CW

s − T )

3T CW
s − T0 − 2T

)
for T < T CW

s (7)

shown in Fig. 1, with T CW
s = T0 + λ2

aC66,0
the new transition temperature, increased with respect to T0 by the coupling to 

the strain. An energy scale characteristic of the coupling is given by T CW
s − T0, and determines the curvature of C66(T ) in 

Fig. 1(b, c). Note that the renormalized χ̃ϕ = 1/a(T − T CW
s ) naturally diverges at the new transition temperature.

In principle, the structural transition may arise either from a divergence of χϕ , as in an electronically-driven transition, or 
from a vanishing of C66,0, as in a bare lattice instability. It has been proposed that the temperature dependence of C66 close 
to the phase transition can distinguish the two cases [8,107]. Namely, in the Landau theory of a purely elastic transition, the 
elastic modulus is expected to vanish linearly, since it is the inverse linear susceptibility of the elastic strain. However, for 
an electronically-driven transition, which is assumed in Eq. (1), the elastic modulus is expected to vanish with a curvature, 
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Fig. 2. (a) Schematic representation of the capacitance dilatometer with a sample inserted for three-point bending. The sample (see panel (b), of dimensions 
l × w × h ≈ 3 × 1 × 0.1 mm3) is supported by three wires and pressed against one movable plate of a plate-type capacitor using a screw with a force of 
≈ 0.2 N. The movable capacitor plate is suspended via a set of circular parallel springs and the change of the capacitor gap d (indicated by arrows) on 
changing temperature is measured. (c) shows the regular setup with a sample inserted for thermal expansion measurement. (d) Temperature evolution 
of the capacitor gap d(T ), expected in a c-axis thermal-expansion (TE) experiment of a 0.1-mm-thick BaFe2As2 sample [114] (black dashed line), and 
measured in three-point bending (3PB) of such a sample oriented along [100] (blue line) and [110] (red line). An exceedingly large effect is observed in the 
latter case, a result of the strong temperature dependence of the shear modulus C66 of BaFe2As2.

following Eq. (6) (Fig. 1). The experimental data, shown below, support the second scenario of an electronic nematic order 
parameter.

Equation (1) above, however, is limited to a description of a second-order nematic/structural transition and neglects the 
subsequent (or concomitant) magnetic transition occurring in most iron-based systems. To illustrate the expected tempera-
ture dependence of C66 for BaFe2As2, the Landau model can be expanded to describe this split magneto-structural transition 
phenomenologically. This is achieved by the free energy density

F = F0 + a

2
(T − T0)ϕ

2 + B

4
ϕ4 + C66,0

2
ε2

6 − λε6ϕ − ε6σ + u

2
(T − T N,0)M2 + v

4
M4 − μϕM2 (8)

which is equivalent to Eq. (1) concerning the elastic and nematic contributions and adds a magnetic order parameter M . 
Additionally, the contribution of conjugated uniaxial stress −ε6σ is also included to model the behavior under finite stress. 
Parameters values a = 1, T0 = 1.025, B = 1, C66,0 = 1, λ = 0.2, u = 1, TN,0 = 1, v = 1 and μ = 0.2 were fine-tuned so that 
the model reproduces the second-order structural and a first-order magnetic transition slightly below the structural one. 
Note that the coupling between M and ϕ causes the magnetic transition to be first order despite a positive fourth-order 
coefficient v . A solution that minimizes F is calculated numerically for varying values of σ and is shown together with the 
resulting elastic modulus, C66 (still given by Eq. (3) in Fig. 3(b)). Note that the temperature dependence of C66 is unchanged 
with respect to the solution to Eq. (1) in the high-temperature region where M = 0, while the first-order transition at TN
induces a step-like hardening of C66 on decreasing T .

We note that the above Landau formalism is a mean-field treatment, in which fluctuations of the order parameter are 
ignored. In fact, this often turns out to be a good approximation for second-order structural phase transitions, because the 
long-range elastic interactions strongly suppress fluctuations [108–110].

3. Technique: three-point bending in a capacitance dilatometer

Three-point bending is a long-standing and widely used mechanical test to study elastic properties of diverse materials. 
The technique is particularly appealing by its simplicity. A platelet- or beam-shaped sample is supported along two lines, 
while a force is applied at a third, middle, line and the induced deflection is measured. Small forces result in a sizable 
deflection so that the elastic modulus can be measured comparatively easily. In the limit of thin samples, the measured 
elastic modulus is proportional to the material’s Young modulus, which also determines the sample stiffness in a uniaxial 
tension/compression experiment [111], even though samples are subject to non-uniform stress in three-point bending [112]. 
We have developed a three-point bending setup in a capacitance dilatometer [113] to measure the Young modulus of iron-
based materials with very high resolution [23]. The advantage of this technique over the ultrasound measurements used 
more traditionally to determine elastic constants is that the sample requirements are not as stringent. In particular, ultra-
sound velocity measurements require samples of considerable size and quality. On the other hand, the typically quite thin 
platelet-like single crystals available for the iron-based materials are perfectly suited for the three-point-bending technique. 
This has allowed us to investigate a larger variety of materials than would have been possible using ultrasound.
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In a typical capacitance dilatometer, the sample is held in place by a small uniaxial force from the two-leaf springs 
of the parallelogram arrangement holding the movable capacitor plate (see Fig. 2(c)). Hence, sample length changes (due 
to, e.g., thermal expansion) lead to a change in the capacitor gap d. A very high length resolution of 0.1–0.01 Å can be 
achieved by measuring the resulting change of capacitance [113]. By placing a sample in three-point-bending configuration 
(Fig. 2(b)) into the dilatometer, as shown in Fig. 2(a), one no longer measures the thermal expansion of the sample, but 
rather its elastic bending modulus. This is because the small force from the dilatometer causes the sample to bend and the 
effective height of the arrangement is determined by the sample’s flection, hence, its elastic modulus. Notably, when the 
elastic modulus of such a sample becomes soft (i.e. decreases), the sample bends more strongly, so that its effective height 
along the axis of the dilatometer decreases. Fig. 2(d) shows examples of such measurements. The red and the blue curves 
show three-point-bending experiments with samples oriented with their tetragonal [110] and [100] directions, respectively, 
perpendicular to the supports. An exceedingly large effect is observed in three-point bending along [110]. This is because 
Young’s modulus along [110],

Y [110] = 4

(
1

C66
+ 1

γ

)−1

with γ = C11

2
+ C12

2
− C2

13

C33
(9)

is dominated by the elastic shear modulus C66 as long as C66 is smaller than the other Cij , and C66 decreases strongly 
on cooling towards Ts [101]. In contrast, the black dashed line shows the much smaller temperature-dependent change in 
the capacitance gap �d expected from just the thermal expansion of a 100-μm-thick sample of BaFe2As2 [114]. A detailed 
description of the quantitative analysis of the data is given in [24]. The technique is particularly well suited to access large 
changes in the Young modulus of a sample occurring over a broad temperature range, as well as any sharp anomalies. As we 
will show, this technique even has the resolution to detect the often very small anomalies at the onset of superconductivity.

In addition to the static three-point-bending measurements in the capacitance dilatometer, ultralow-frequency dynamic 
three-point-bending measurements of BaFe2As2 were performed using a Diamond DMA (dynamical mechanical analyzer) 
from PerkinElmer [115]. Here, samples are subjected to a force F = FS + FD exp(iωt) with a dynamic component at 
the very low frequency of 1 Hz. From the measured displacement u = uS + uD exp(i(ωt − δ)), the dynamic stiffness 
ks = FD/uD exp(iδ) ∝ Y [110] is calculated. ks may be a complex number in the presence of dissipation, and its real part 
corresponds to the results of the static measurements.

4. Dynamical three-point-bending measurements of BaFe2As2

Before addressing the detailed static measurements of Young’s modulus in a capacitance dilatometer, we show in this 
section results of dynamic three-point-bending experiments on BaFe2As2, which elucidate the role of structural twins in the 
ordered phase [116]. For these measurements the sample is subjected to the force F = FS + FD exp(iωt) with a dynamic 
component FD ∼ (0.7–0.8)FS at a frequency of ω/2π = 1 Hz. Fig. 3(a) shows the real part of the Young modulus Y ′[110]
(equivalent to the result of static measurements) for different FS but constant ratio FD/FS.

A smooth softening of Y [110] upon cooling towards the structural transition is observed (Fig. 3(a)), in agreement with the 
soft-mode behavior shown in Fig. 1. However, at the lowest stress, a kink and a small, sharp, minimum may be ascribed to 
the structural and magnetic transition, respectively, and Y [110] is essentially temperature independent below TN, in strong 
contrast to the behavior shown in Fig. 1. With increasing stress, the data deviate from the low-stress curve below some 
T > Ts and Y [110] does not soften as much in total. The structural transition is smeared out, while the magnetic transition 
is affected much less. Notably, a discontinuous hardening of the Young modulus on cooling through TN emerges with 
increasing stress. It is reminiscent of the phonon modes measured using inelastic neutron scattering [117]. At the highest 
stress, Y [110] indeed recovers its initial high-temperature value at ∼ 0.9 TN. Note that the deviation of this curve from the 
others at higher temperatures is an experimental artefact.

The experimental data at high stress are well reproduced by the model in Eq. (8) of a split magneto-structural transition 
(Fig. 3(b)). However, the experimental data obtained at lower stress are much too small in comparison to this model for 
temperatures T < Ts. These anomalously low values of Young’s modulus below Ts and at low stress likely arise from the 
“superelastic” behavior of the twinned samples, which is due to domain wall motion and is typically found in ferroelastic 
materials [111,118,119]. The effect can be understood by considering two kinds of structural domains, ‘+’-type domains that 
are elongated along [110] and ‘−’-type domains that are shortened along this direction. Application of a small compressive 
stress σ[110] increases the fraction of ‘−’-type domains at the expense of the ‘+’-type domains, so that the total sample 
length decreases through domain wall motion. A relatively small applied force can thus induce significant length changes, 
which means that the elastic modulus appears very small at low frequencies. In the three-point-bending experiment, sam-
ples are essentially subjected to stress along the [110] direction, which suppresses domain formation and leads to a strong 
variation of the measured Y [110] with applied stress. The true monodomain elastic properties of the system can only be 
obtained in these dynamic three-point bending experiments if the applied stress is strong enough to force the system into 
a single domain state.
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Fig. 3. (a) Real part of the Young modulus Y ′[110] of BaFe2As2 obtained in dynamic three-point-bending experiments in which the applied force 
F = FS + FD exp(iωt) varies at a frequency of ω/2π = 1 Hz (see inset). Y [110] ∝ FD/uD exp(iδ) is calculated from the measured displacement u =
uS + uD exp(i(ωt − δ)) under the applied force F (see inset). Data are taken at different FS and constant ratio FD/FS. The maximal uniaxial stress at 
the sample surface arising from FS, σmax,S = 3FSl

2wh2 [112] is given as a characteristic parameter. The two measurements with the lowest force were con-
ducted in “constant amplitude” mode, in which FS and FD are smaller when the sample is soft and increase when the sample becomes harder, thus 
increasing the resolution. (b) Soft elastic mode in a mean-field picture for closely spaced structural and magnetic phase transitions, obtained via numer-
ically minimizing Eq. (8) (see text for parameters) and then calculating C66. Good agreement with the experimental data is obtained for the high-stress 
measurement, while the measurements at lower stress and below Ts are dominated by the effect of structural twins. Insets show the order parameters ϕ
and |M| of the numerical solution.

5. Young’s modulus of Ba(Fe,Co)2As2, (Ba,K)Fe2As2 and FeSe

Fig. 4 shows Young’s modulus Y [110] of Co- and K-doped BaFe2As2 and of FeSe, as measured by the three-point-bending 
technique in a capacitance dilatometer described in Section 3 [23,27]. Fig. 4(c) shows that the temperature dependence 
of Y [110] obtained by three-point bending is very similar to C66 (see Eq. (9)) as determined by ultrasound measurements 
for Ba(Fe1−xCox)2As2 [101], the system for which such data is available. Notably, all essential features of C66 are also 
observed in Young’s modulus data, confirming the capacity of our experiment to determine the temperature dependence of 
the shear modulus. In BaFe2As2, strong softening of Y [110] upon approaching the transition at Ts from above is observed. 
The softening gradually disappears with both Co- and K-doping. Interestingly, the Young modulus Y [110] of FeSe, which 
undergoes a similar structural transition as the iron-arsenides but no magnetic phase transition, shows the same pronounced 
softening on cooling towards Ts ≈ 90 K as underdoped BaFe2As2 (Fig. 4(d)). Contrary to expectations, Y [110] does not reach 
zero even at the second-order structural phase transitions. The reason for this is unclear at present and may be related 
to effects of disorder or finite stress. We note that, similarly, C66 does not reach zero in the ultrasound data, either. For 
moderately overdoped samples, a marked softening on cooling is still observed, while Y [110] hardens considerably below Tc. 
Young’s modulus of a non-superconducting, strongly overdoped Ba(Fe0.67Co0.33)2As2 sample is found to harden by a few % 
on cooling from room temperature, which is the typical behavior induced by phonon hardening [120]. The flat temperature 
dependence in the orthorhombic state below Ts is ascribed to the multidomain effect outlined in the previous section and, 
in the following, we will therefore focus on data at T > Ts. We note that we find no evidence of a higher-temperature 
(T > Ts) nematic transition as proposed by Kasahara et al. [121] in any of our high-resolution shear modulus data. This 
is in agreement with previous high-resolution thermal-expansion measurements on both Co- and P-substituted BaFe2As2
[114,122], heat-capacity measurements in BaFe2(As1−xPx)2 [123], and stress-dependent measurements of phonon modes by 
Raman spectroscopy in BaFe2As2 [62], which also do not find evidence of an additional phase transition.

5.1. Doping and temperature dependence of the nematic susceptibility

Eq. (3) directly links C66 to the nematic susceptibility χϕ under the assumption that the structural transition is in-
duced by bilinear coupling to a nematic order parameter, Eq. (1). In real systems, the bare elastic constant C66,0 is slightly 
temperature dependent because of phonon anharmonicity and typically hardens by a few % upon cooling between room 
temperature and zero temperature [120]. In order to remove this background contribution and to connect with the Young 
modulus, we make the approximation

Y [110]
Y0

≈ C66

C66,0
(10)

Here, Y0 is the non-critical contribution to Y [110] for which we use the data from a 33% Co substituted sample and further 
assume that it is independent of doping [114]. Additional details can be found in [23,24]. Assuming that the structural 
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Fig. 4. Young’s modulus along the tetragonal [110] direction Y [110] of (a) Ba(Fe1−xCox)2As2 and (b) Ba1−xKxFe2As2 for a wide doping range, measured 
using the static three-point bending in a capacitance dilatometer described in Section 3. The data for T < Ts are dominated by the effect of structural 
twins, similar to the low-stress measurements of Fig. 3. (c) Young’s modulus Y [110] (lines) and shear modulus C66 (symbols, from Ref. [101]) for Co-doped 
BaFe2As2. Both quantities are normalized at room temperature. The indicated Co content is taken from Ref. [101] and samples with similar transition 
temperature are compared. All essential features, namely the strong softening of Y [110] on cooling towards Ts , and the marked hardening below Tc for 
moderately overdoped samples, are reproduced in Young’s modulus data. Those curves show, however, a slightly stronger curvature than C66, presumably 
because of the contributions from the other elastic constants (see Eq. (9)). (d) Young’s modulus Y [110] of single crystalline FeSe, which shows very similar 
softening on cooling towards Ts .

transition of FeSe is also induced by bilinear coupling between a nematic order parameter and the lattice, ϕ is inferred 
from Young’s modulus data of FeSe in the same way, assuming similar Y0 [27]. The obtained bare nematic susceptibility 
χϕ is plotted in Fig. 5(a, b, e) in units of λ2/C66,0. Note that the nematic susceptibility renormalized by the coupling 
to the lattice can be inferred easily using 

(
λ2χ̃ϕ/C66,0

)−1 = (
λ2χϕ/C66,0

)−1 − 1. χϕ increases strongly with decreasing 
temperature for all but the most strongly overdoped BaFe2As2 samples. Interestingly, FeSe is found to resemble closely 
underdoped BaFe2As2.

The inverse 
(
χϕ

)−1
, plotted in Fig. 5(c, d, f), evidences a mean-field-type temperature dependence χϕ = 1/(a(T − T0))

for Ba(Fe1−xCo2)2As2 up to x = 0.09, in agreement with Ref. [101], for Ba1−xKxFe2As2 up to x = 0.24 and for FeSe. However, 
and somewhat surprisingly, Y [110] does not follow a Curie–Weiss law in the higher doped Ba1−xKxFe2As2 samples in which 
the structural transition is suppressed. Instead, the temperature dependence is found to be less “critical” and Y [110] displays 
a clear inflection point. The detailed doping and temperature dependence of χϕ is presented in Fig. 6. The color map of χϕ

in Fig. 6(a) shows that the nematic susceptibility is enhanced fairly symmetrically over most of the superconducting domes 
of both Ba(Fe1−xCox)2As2 and Ba1−xKxFe2As2, suggesting its possible role in promoting superconductivity [23]. To describe 
the temperature dependence of χϕ for different doping levels, we consider two parameters. First, we define T ∗ as either 
the inflection point of χϕ(T ) or its maximum value, whichever is greater. T ∗ is thus a lower limit for the validity of a 
Curie–Weiss law. Second, deviations from the Curie–Weiss law are ascribed to a temperature dependence of the parameter 
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Fig. 5. Nematic susceptibility χϕ in units of C66,0/λ2 of (a) Ba(Fe1−xCox)2As2 and (b) Ba1−xKxFe2As2 obtained from the data in Fig. 4. For a second order 
structural phase transition C66,0/λ2 should reach 1 at Ts and it is unclear why the experimental data do not reach this value. (c), (d) show the inverse (
λ2χϕ/C66,0

)−1
revealing a Curie–Weiss-like temperature dependence of the nematic susceptibility for all samples except Ba1−xKxFe2As2 with ≥ 30% K 

content. The dashed straight line in (c) is a guide to the eye. (e) and (f) show similar data for FeSe, which resemble closely underdoped BaFe2As2.

T0, whose value at fixed temperatures is plotted in Fig. 6(b). T ∗ reaches near zero temperature around optimal doping, 
which is consistent with a quantum critical scenario [101] only in the Ba(Fe1−xCox)2As2 system. In contrast, T ∗ does not 
go below ∼ 75 K in Ba1−xKxFe2As2. The findings suggest a first-order transition between different ground states preempt-
ing a quantum critical point in Ba1−xKxFe2As2, in particular the step-like change of T0 between 24% and 30% K content 
(Fig. 6(b)). Interestingly, a new, C4-symmetric, magnetic phase was subsequently found to emerge in between these two 
doping levels [98].

In Ref. [124], C66(T ) was calculated including vertex corrections and was found not to follow the mean-field-type 
Curie–Weiss law. The data in Figs. 4 and 5 can be well described in this approach, for which the change of behavior of 
Ba1−xKxFe2As2 between 24% and 30% K content would be a consequence of a simple change of parameters as might be due 
to, e.g., a Lifshitz transition [124]. Finally, it is notable that the Curie constant λ2/aC66,0 = T CW

s − T0 ≈ 30–40 K, which is 
the characteristic energy of the electron–lattice coupling, is found to be nearly doping independent up to 9% Co content and 
24% K content, the compositions for which it can be evaluated. Note that a value of ∼50–60 K is found for same parameter 
by evaluating C66 ultrasound data in the Ba(Fe1−xCox)2As2 system [101]. This value is comparable but slightly larger than 
our result, and reflects the lower curvature of the C66 with respect to the Y [110] data in Fig. 4(c).

5.2. Young’s modulus around Tc

Besides the softening due to the nematic transition, the high resolution of our three-point-bending experiment can also 
be used to study the behavior at and below the superconducting transition. In Fig. 7, we show our Young’s modulus data 
for Co- and K-doped BaFe2As2 as well as for FeSe around Tc in detail. For most samples, a pronounced hardening of Y [110]
below Tc is observed, while for some compositions of strongly overdoped BaFe2As2 and FeSe a small step-like softening of 
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Fig. 6. (a) Nematic susceptibility as a color-coded map in the composition-temperature phase diagram of Ba(Fe1−xCox)2As2 and Ba1−xKxFe2As2. Green 
triangles show the inflection point of χϕ(T ) as a lower limit for the validity of the Curie–Weiss law λ2χϕ/C66,0 = λ2/aC66,0

T −T0
(see text). (b) Weiss temperature 

T0 and temperature at which C66 extrapolates to zero, T CW
s . When the data deviate from the simple Curie–Weiss law, as for samples with ≥ 30 % K content, 

this deviation is ascribed to a temperature-dependent T0 and T0 (extrapolated) at various temperatures is reported. The dashed area indicates the doping 
range, in which an abrupt change suggests a first-order transition between different ground states. (c) Curie constant λ2/aC66,0 = T CW

s − T0. The dashed 
line shows the extrapolation for the region where the data do not follow the Curie–Weiss law, used to obtain T0(T ) in (b).

Y [110] at Tc is also visible. A hardening of the elastic shear modulus C66 below Tc was reported previously in overdoped 
Ba(Fe1−xCox)2As2 [21,101]. As explained below, this effect is unusual in its sign, shape and magnitude for the effect of 
superconductivity on an elastic modulus.

The usual thermodynamic signature of a second-order phase transition in Young’s modulus or any other elastic modulus 
is a small sudden softening upon cooling, which is related to the strain/stress dependence of Tc . Such a discontinuity is 
expected because the Young modulus Yi is the inverse of a component of the elastic compliance Sii , which, in turn, is 
a second derivative of the free energy. An Ehrenfest-type relation relates the size of this discontinuity at Tc , �Yi , to the 
uniaxial-pressure derivative dTc/dpi ,

�Yi = −Y 2
i

(
dTc

dpi

)2

�C p/Tc (11)

Here, �C p > 0 is the specific-heat discontinuity at Tc and i stands for the direction. Note that necessarily �Yi < 0, i.e. 
Yi shows a step-like decrease on cooling through the transition. Also, the shear modulus C66 alone is not expected to 
have such discontinuity, because the first derivative of Tc with respect to a shear deformation necessarily vanishes [125]. 
Hence, any discontinuity in the Young modulus arises from the contribution of the longitudinal elastic constants (the ‘γ ’ in 
Eq. (9)) and �Y [110]/Y 2[110] = �Y [100]/Y 2[100] . It has been pointed out in Ref. [126] that for an exotic superconducting state 
that mixes nematic fluctuations and s- and d-wave superconductivity and breaks tetragonal symmetry, even C66 can have 
a discontinuity at Tc. Such a state might occur in overdoped Ba1−xKxFe2As2 [126]; however, the Young modulus is not an
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Fig. 7. Enlarged view of the low-temperature Young modulus Y [110] of (a) overdoped and (b) underdoped Ba1−xKxFe2As2, showing a pronounced hardening 
below Tc up to 82% K content. (c)–(e) Low-temperature Young’s modulus along [110], Y [110] , (solid line) and along [100], Y [100] , (dashed line) of overdoped 
Ba1−xKxFe2As2, showing that the hardening occurs only in the [110] direction. (f)–(i) Enlarged view of the data close to Tc showing an additional small 
step-like anomaly �Yi at Tc . A linear background has been subtracted from the data. (j)–(l) Same as in (a), (b) for Ba(Fe1−xCox)2As2. (m) Enlarged view of 
the low-temperature Young modulus of FeSe. (f) Even further enlarged view of the Young modulus of FeSe around Tc, with a linear background subtracted. 
Vertical arrows mark Tc in all panels. Data in (a)–(e) and (j)–(m) have been shifted vertically for better comparison. Lines in (i), (n) indicate an ideal 
second-order phase transition.

ideal probe to search for this effect, since it also contains the contribution from longitudinal elastic constants, as mentioned 
above.

Fig. 7 presents our Young modulus data in the vicinity of Tc in detail. The hardening of Y [110] below Tc is resolved for 
Ba1−xKxFe2As2 up to 82% K content and Ba(Fe1−xCox)2As2 up to 9% Co content (panels (a), (b), (j), (k)). Note that the effect 
is even observed for underdoped samples, when Tc lies within the orthorhombic state and Young’s modulus is actually 
dominated by the effect of structural twins (see Section 4). As detailed in Ref. [21], a hardening of the shear modulus 
C66 shows that nematic fluctuations, which decrease C66, are weakened in the superconducting state. Its observation up 
to 82% K content indicates the presence of such nematic fluctuations over a large part of the superconducting dome in 
the phase diagram of Ba1−xKxFe2As2, although the degree of hardening strongly decreases with doping. Since this kind of 
response of Y [110] to superconductivity derives from the contribution of the shear modulus C66, it should not be present 
in Young’s modulus along [100], Y [100] , which does not contain any contribution from C66. Consistently, panels (c), (d), (e) 
show that such a hardening is not present in Y [100] of overdoped Ba1−xKxFe2As2, and very small effects may be due to 
sample misalignment.

In FeSe, such a hardening of Y [110] setting in abruptly at Tc is not observed, which can be taken as a sign that or-
thorhombic distortion and superconductivity do not compete in the same way as in doped BaFe2As2 in this material [70,27]. 
However, there is a very slight hardening of Y [110] (two orders of magnitude smaller than for similar Ba(Fe1−xCox)2As2 sam-
ples) with an onset well above Tc , which correlates with an anomalous uniaxial thermal expansion seen previously [70]. 
The origin of this effect is unclear at this point and it may possibly be a consequence of the presence of very small Fermi 
energies in the system [76,75,127,128]. For some compositions of strongly overdoped Ba1−xKxFe2As2 (Fig. 7(f, g, i)), for 
Ba(Fe0.88Co0.12)2As2 (Fig. 7(l)), and for FeSe (Fig. 7(n)), we can also resolve the small step-like softening of Y [110] and Y [100]
expected from thermodynamics (Eq. 11). Using additional specific-heat data [129,130,27], the pressure-derivative of Tc is 
calculated via Eq. (11) and shown in Table 1. The uniaxial pressure derivative dTc/dpi can also be calculated by using uni-
axial thermal expansion and specific heat via a similar Ehrenfest relation dTc/dpi = V m�αi/�(C p/T ). As shown in Table 1, 
the pressure derivatives derived from evaluating either Young’s modulus or the thermal-expansion [70,98,131] data agree 
quite well. It is unclear why we do not resolve this step-like softening of the Young modulus either in the Ba0.18K0.82Fe2As2
sample or in the Y [100] of the Ba0.4K0.6Fe2As2 sample. These, instead, seem to show a step-like hardening that cannot be 
explained with Eq. (11).
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Table 1
Uniaxial in-plane pressure derivative |dTc/dpa| (sixth column), inferred using the Ehrenfest relation, Eq. (11), from the discontinuity of the Young modulus 
at Tc (third column, Fig. 7) and the specific heat (fifth column). A high-temperature Young modulus Yi(300 K) = 80 GPa has been assumed in all cases. The 
obtained value should be the same for the two in-plane directions i = [110] and i = [100]. For comparison, the last column shows dTc/dpa inferred from 
uniaxial thermal-expansion and specific heat data. The sign of dTc/dpa can only be obtained from thermal expansion.

i �Yi

Yi (300 K)

(10−3)

Yi (Tc)

Yi (300 K)
�C p/Tc

(mJ mol−1K−2) 
Refs. [129,70,132]

∣∣∣ dTc
dpa

∣∣∣
(K/GPa) 
Eq. (11)

dTc
dpa

(K/GPa) 
Refs. [114,70,27]

Ba0.52K0.48Fe2As2 [100] –0.62 1.03 126 1.9 −2.3
Ba0.52K0.48Fe2As2 [110] –1 0.92 126 2.7 −2.3
Ba0.40K0.60Fe2As2 [110] –0.73 0.99 96 2.5 −2.5
Ba0.10K0.90Fe2As2 [100] –0.25 1.07 50 1.8 −2.2
Ba0.10K0.90Fe2As2 [110] –0.18 1.05 126 1.6 −2.2
Ba(Fe0.88Co0.12)2As2 [110] –0.8 1.02 9 8 ≈12
FeSe [110] –0.0051 0.16 5.6 3.2 3

6. Different probes of the nematic susceptibility

Quite generally, the nematic susceptibility can be probed by measuring the sensitivity of the electronic anisotropy of 
various quantities to uniaxial stress or strain. The most detailed data have been obtained using strain-dependent resistivity 
[25,133,45,134]. The electronic Raman response in different symmetry channels provides another probe [63] without actually 
having to apply any stress or strain to the crystal. In this section, we briefly review these studies and compare them to the 
results of our shear-modulus measurements. We note that there are also other probes that were used to obtain the nematic 
susceptibility, e.g., stress-dependent measurements of the optical reflectivity [42,43], and these agree in general well with 
our elastic data.

6.1. Elastoresistivity

The elastoresistivity is defined as the resistance change induced by sample deformation (strain) and is closely related to 
the piezoresistivity, which is the resistance change due to stresses acting on the sample [133]. Since the in-plane resistance 
anisotropy can be taken as a proxy for the nematic order parameter in the iron-based systems, there is an elastoresistivity 
coefficient, namely m66, which is directly linked to the nematic susceptibility. In Refs. [25,133,134], the in-plane resistivity 
anisotropy N of iron-based materials was measured as a function of strain ε6 , externally applied to the sample via a piezo 
stack. Making use of the bilinear coupling λ between nematic order parameter and shear deformation, one obtains from 
Eq. (1), 2m66 = dN/dε6 ∝ dϕ/dε6 = λχϕ [25,134]. Note that by measuring the strain instead of the stress dependence 
of N the elastic properties of the material are “short-circuited” and, therefore, the bare electronic nematic susceptibility 
χϕ , and not the renormalized χ̃ϕ is expected to be measured [25]. The proportionality constant between N and ϕ is 
related to the details of the Fermi surface and electronic scattering and can, in principle, be temperature, as well as doping 
dependent. It was shown that m66 follows a Curie–Weiss law ∼ 1/(T − T0) in BaFe2(As0.7P0.3)2 [134], which advocates that 
this proportionality constant is only very weakly temperature dependent. Further, Ni- and Co-doped samples with the same 
Ts were compared [45]. Ni doping induces larger scattering (lower RRR) than Co doping; however, it was found that the 
elastoresistivity m66 is independent of this kind of disorder for T > Ts [45].

As mentioned previously, the structural transition may, in principle, arise either from a divergence of χϕ , as in an 
electronically-driven transition (as assumed here), or from vanishing C66,0, as in a bare lattice instability. The quantity 
obtained by the shear modulus measurements, λ2χϕ/C66,0 diverges in both cases. Notably, the elastoresistivity m66 ∝ λχϕ

is independent of the bare shear modulus C66,0. If the lattice caused the transition, then λ2χϕ/C66,0 would diverge, but 
λχϕ would show no strong temperature dependence. The experiment by Chu et al. [25] showed that, however, λχϕ also 
diverges, which was taken as a proof that ϕ drives the transition and that the lattice distortion is just a consequence of the 
bilinear coupling to ϕ [25].

Elastoresistivity measurements of the optimally doped compounds BaFe2(As0.7P0.3)2, Ba0.6K0.4Fe2As2, Ba(Fe0.93Ni0.07)2As2, 
Ba(Fe0.955Ni0.045)2As2, Fe(Te0.6Se0.4) [134] as well as of FeSe [74] show that the elastoresistivity coefficient m66 diverges fol-
lowing an approximate Curie–Weiss law in all of these systems, though deviations below ∼ 100 K are sometimes observed. 
We note that the quantity λ2χϕ/C66,0 obtained from the shear modulus is normalized such that it reaches (ideally) the value 
1 at the phase transition, equivalent to a vanishing C66. In contrast, the elastoresistivity is not normalized and the value of 
m66 is indeed found to be somewhat doping dependent. It seems, e.g., to peak around optimal doping in Ba(Fe1−xCox)2As2, 
which was suggested to be due to enhanced fluctuations near a quantum critical point [134]. However, m66 still has a 
similar magnitude in all of the studied iron-based systems, although its sign depends on the particular system.

6.2. Electronic Raman scattering

Electronic Raman scattering of Ba(Fe1−xCox)2As2 [135,63] finds an enhancement of the Raman response in the B2g
symmetry channel (which is the symmetry that corresponds to the orthorhombic distortion) with respect to the B1g



A.E. Böhmer, C. Meingast / C. R. Physique 17 (2016) 90–112 103
Fig. 8. Weiss temperature T0 obtained by fitting the nematic susceptibility as determined by Young’s modulus Y [110] [23] (red circles), electronic Raman 
scattering [63] (orange squares) and elastoresistivity m66 [134] (black open stars) measurements in Ba(Fe1−xCox)2As2. Also given is the Weiss temperature 
T0,T1 T of the spin–lattice relaxation rate divided by temperature 1/T1T in nuclear magnetic resonance [139,140] (green diamonds). Lines are a guide to the 
eye. The phase transition temperatures Ts, TN and Tc [12] are indicated by thin colored lines and areas. T CW

s , the temperature at which C66 extrapolates 
to zero, is indicated by blue triangles.

symmetry channel. Using Kramer’s Kronig relations, the static nematic charge susceptibility χ x2−y2

0 was extracted from 

the data. χ x2−y2

0 of Ba(Fe1−xCox)2As2 was found to increase on approaching the structural transition, though it does not 
diverge at Ts. It, indeed, follows a Curie–Weiss law for a wide doping range [63]. Recently, Raman scattering data and 
χ

x2−y2

0 was also reported for FeSe and Ba1−xKxAs2As2 [136]. While χ x2−y2

0 of FeSe and underdoped Ba1−xKxAs2As2 shows 
the same Curie–Weiss-like divergence, deviations from the Curie–Weiss law were observed for close-to-optimally-doped 
Ba1−xKxAs2As2 samples.

In Ref. [124], both the shear modulus and the Raman susceptibility have been calculated in the five orbital models, in-
cluding vertex corrections. It was noted that the Raman susceptibility is less singular than the shear modulus because the 
photons cannot couple to the acoustic lattice vibrations due to the mismatch of their wavelength for the same frequency 
[124]. In this sense, the charge nematic susceptibility in Raman scattering should be similar to the bare nematic suscep-
tibility χϕ and not χ̃ϕ , which is renormalized by coupling to the lattice [137]. Electronic Raman scattering as a probe of 
nematicity in iron-based systems is discussed in another contribution to this issue [138].

6.3. Comparison of shear modulus, elastoresistivity, and electronic Raman scattering

Among the above materials, the Ba(Fe1−xCox)2As2 system has been studied most intensively. In this system, all three χϕ

(shear modulus, [23]), m66 (elastoresistivity [134]) and χ x2−y2

0 (electronic Raman scattering [63,135]) show a Curie–Weiss-
like divergence. To make a quantitative comparison, we show in Fig. 8 the values of the Weiss temperature T0 obtained 
by fitting these data to a Curie–Weiss law ∼ 1/(T − T0). Note that in case of the m66 data, the low-temperature region, 
where m66 deviates somewhat from a Curie–Weiss law close to optimal doping, has been excluded from the fit [134]. We 
have also included T0,T1 T obtained by fitting the spin–lattice relaxation rate divided by temperature 1/T1 T [139,140], since 
it also follows a Curie–Weiss temperature dependence [139]. 1/T1 T is related to the strength of the magnetic fluctuations, 
which the spin-nematic scenario explicitly links to the nematic susceptibility [3] (these data are discussed in the following 
Section 7). Also shown is T CW

s , the temperature at which C66 extrapolates to zero, i.e., at which the structural transition 
would be expected (see Section 2). Why C66 does not quite reach zero and, hence, T CW

s is lower than Ts is still an open 
question.

Intriguingly, T0 as determined by electronic Raman scattering agrees quite well with the elastic data over the whole 
doping range, which supports that the charge nematic susceptibility χ x2−y2

0 of the Raman experiment is very closely related 
to the bare nematic susceptibility χϕ obtained using the shear-modulus data. In contrast, the values of T0 derived from 
the elastoresistivity data are considerably higher at all doping levels than those from the elastic and Raman data, which 
is unexpected within the Landau analysis of this quantity [25]. For this probe, T0 appears even to cross the Ts line at 
around 5% Co content, which is also not expected in the simple Landau theory. This curiously high value of T0 for the 
overdoped samples may partly be due to the exclusion of the low-temperature region from the fit of m66 . In this region, 
the divergence of m66 appears to be suppressed at lower temperature, which was attributed to disorder effects [134]. Such 
an effect appears to be either absent or much less pronounced in the Raman and Young’s modulus data. Nevertheless, the 



104 A.E. Böhmer, C. Meingast / C. R. Physique 17 (2016) 90–112
reason for this deviation of the T0 values from m66 for underdoped as well as overdoped Ba(Fe1−xCox)2As2 is unclear to us 
and deserves further attention.

For optimally doped Ba1−xKxFe2As2, the shear-modulus data (see Fig. 5) show strong deviations from a Curie–Weiss 
dependence of the nematic susceptibility, including a prominent inflection point. Interestingly, a very similar temperature 
dependence of the Raman susceptibility χ x2−y2

0 has also been observed in close to optimally doped Ba1−xKxFe2As2 [136]. 
On the other hand, the elastoresistivity coefficient m66 of optimally doped Ba1−xKxFe2As2 shows an approximate Curie–
Weiss-like divergence [134]. Again, the origin of this difference is unclear to us. Finally, for FeSe, χϕ [27], m66 [74] and 
χ

x2−y2

0 [136,137] all show again the familiar Curie–Weiss temperature dependence ∼ 1/(T − T0).

7. Magnetic correlations as the origin of nematicity?

In the itinerant spin-nematic scenario of Refs. [20,21,3], magnetic correlations are at the origin of nematicity and, ulti-
mately, of the structural phase transition. Hence, it should be possible to derive the elastic properties of iron-based materials 
from their magnetic properties. Indeed, a scaling relation between 1/T1 T , as a measure of the strength of spin fluctuations, 
and the shear modulus C66 has been derived in this theory, which provides a useful test of the scenario [26]. Here, we 
briefly review the derivation of this scaling between spin–lattice relaxation rate 1/T1 and C66 and then we check the 
scaling using experimental data in three different iron-based systems.

7.1. Scaling relation between T1T and C66

An expression for the nematic susceptibility in terms of the dynamic spin susceptibility χ is calculated in Ref. [21] as
(
χϕ

)−1 = 1∑
q χ2(q)

− g0 (12)

(see also Ref. [3]), where g0 is a “bare” nematic coupling constant. χϕ is renormalized by bilinear coupling with the elastic 
system (as in Eq. (1)) to(

χ̃ϕ

)−1 = 1∑
q χ2(q)

− (g0 + λ2/C66,0) (13)

where g = g0 +λ2/C66,0 is the renormalized nematic coupling and the crucial parameter of the theory. q = (q, ω) stands for 
the momentum and frequency dependence. The magnetic transition occurs when 

∑
q χ2(q) diverges, but if g > 0 it is suffi-

cient for 
∑2

q χ(q) to reach a finite threshold value (i.e. 1/g) to cause a divergence of χ̃ϕ and induce the nematic/structural 
transition. This is the explanation why Ts can be higher than TN in this scenario, even though both transitions are driven by 
magnetic fluctuations. The spin susceptibility χ can be accessed by the spin–lattice relaxation rate divided by temperature, 
as measured in NMR experiments,

1

T1T
= γ 2

g lim
ω→ω0

∑
q

F 2 (q)
Imχ (q,ω)

ω
(14)

Here, ω0 is the NMR frequency, which is considered to be very small and F (q) is a momentum-dependent form factor that 
peaks at the ordering wave vectors Q 1 and Q 2 when the magnetic field is applied parallel to the ab plane [141]. As shown 
in detail in Ref. [26], 1/T1T measured with the magnetic field in the ab plane is proportional to 

∑
q χ2(q) under certain 

approximations (assuming overdamped dynamics (χ(q,ω))−1 = (χ(q))−1 − iω�, vicinity of a finite-temperature critical 
point so that 

∑
q χ2(q) can be replaced by T0

∑
q χ2(q), and the replacement of the form factor F (q) → F (Q ) because of 

the direction of the applied field). Using this proportionality, one can express χϕ and, with the help of Eq. (3), C66 in terms 
of T1,

C66

C66,0
= 1

1 + (aT1T − b)−1
(15)

with the two parameters a and b [26]. The parameter b is particularly interesting, since it provides a measure of the nematic 
coupling strength b = C66,0

λ2 g , while a contains the strength of the hyperfine interaction, see Ref. [26].

7.2. Test of the 1/T1T –C66 scaling relation in Co- and K-doped BaFe2As2

Fig. 9(a) shows 1/T1 T data of Ba(Fe1−xCox)2As2 from Refs. [139,140], measured under an in-plane magnetic field and 
Fig. 10(a) shows the equivalent data for Ba1−xKxFe2As2 from Ref. [142]. We first discuss the Ba(Fe1−xCox)2As2 system. 
Eq. (15) considers only the fluctuations around the AFM wave vector Q , which are referred to as “interband” contribution 
in Ref. [139]. The non-critical “intraband” contribution has to be subtracted from the data as a background. Following 
Ref. [139], this is achieved by subtracting the data for the strongly overdoped Ba(Fe0.86Co0.14)2As2, modeled as (1/T1T )intra =
0.11 K−1s−1 + 0.63 K−1s−1 exp(−450 K/T ) (black line in Fig. 9(a)). The obtained (1/T1T )inter can be scaled onto the elastic 
data according to Eq. (15), and the result is shown in Fig. 9(b), where the scaling parameters a and b are given in the inset. 
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Fig. 9. (a) Spin–lattice relaxation rate divided by temperature 1/T1T of Ba(Fe1−xCox)2As2 with magnetic field H||ab, from Refs. [139,140]. The data for the 
14% doped sample are taken as a background (black line). (b) Scaling analysis of the shear modulus C66/C66,0 and spin–lattice relaxation rate. The lines are 
obtained from three-point bending, while the symbols show the data of (a), scaled according to Eq. (15) after subtraction of the background. The scaling 
parameters are reported in the inset.

Fig. 10. Same as Fig. 9 but for Ba1−xKxFe2As2. NMR data with field H||ab are taken from Ref. [142]. The vertical line in the inset marks the K content at 
which the structural transition is suppressed in a first-order-like fashion and the temperature dependence of the nematic susceptibility changes abruptly 
(see Fig. 6).

The scaling works very well for all Co substitution levels, supporting a magnetic origin of the shear-modulus softening [26]. 
Alternatively, a phenomenological linear scaling between C66 and 1/T1 T was proposed in Ref. [143], which, however, does 
not work as well. Note that the parameter b is proportional to the difference between the Weiss temperatures T0 and T0,T1 T

of the nematic susceptibility χϕ and 1/T1T , respectively, which are shown in Fig. 8. Interestingly, T0 and T0,T1 T cross and 
b changes sign around the critical composition where the structural transition is suppressed. However, the assumption 
of a finite-temperature critical point used to derive the scaling relation is not strictly valid in this doping region and, 
hence, this sign change of b might be an artefact. However, if b, or, equivalently, g really becomes negative for overdoped 
Ba(Fe1−xCox)2As2, it would indicate that a non-nematic, C4-symmetric magnetic state is preferred over the stripe-type one. 
Such a C4-symmetric magnetic phase is, indeed, found to be induced by Na or K substitution in BaFe2As2 very close to the 
critical point [92,98].

We note that a similar scaling attempt in Ref. [63], between the nematic charge susceptibility χ x2−y2

0 measured using 

electronic Raman scattering, and the elastic modulus failed. Here, the authors equated the χ x2−y2
with the renormalized 
0
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Fig. 11. (a) Young’s modulus Y [110] of FeSe, superimposed on the data for Ba(Fe1−xCox)2As2. FeSe fits very well in the series. The inset shows the nematic 
susceptibility (see Eq. (3)). (b) 1/T1 T normalized by its (extrapolated) value at room temperature of FeSe and Ba(Fe1−xCox)2As2 (data taken from Refs. [139,
140]). Vertical arrows indicate Ts . While 1/T1 T of underdoped Ba(Fe1−xCox)2As2 shows a strong increase on cooling towards Ts (and a steeper increase 
below), the data for FeSe only increase below Ts.

nematic susceptibility χ̃ϕ so that the scaling takes the form C66/C66,0 =
(

1 + aχ x2−y2

0

)−1
(deduced using Eq. (4)) with a 

single parameter a. However, when assuming that χ x2−y2

0 reflects the bare nematic susceptibility χϕ [124,137], the form of 
the scaling should rather be identical to Eq. (15), which does work well also for the Raman data of Ba(Fe1−xCox)2As2.

It is interesting to consider the scaling relation of 1/T1T and C66 also in the Ba1−xKxFe2As2 system, for which both 
sets of data have been published [142,23], but scaling has not been attempted. The striking feature of this system is that 
both 1/T1 T and C66 do not follow a Curie–Weiss temperature dependence over the whole doping region. In particular, the 
nematic susceptibility as obtained from the shear modulus changes its temperature dependence abruptly between 24% and 
30% K content. The NMR data from Ref. [142] show a similar change in the temperature dependence, however, occurring 
rather between 39% and 55%. In spite of the lack of a Curie–Weiss-like temperature dependence, it is remarkable that these 
data can be scaled quite well by Eq. (15) (Fig. 10). Tentatively, the same “intraband” background as for the Ba(Fe1−xCox)2As2
system has been subtracted from the raw 1/T1T data. The parameters a and b used in the scaling are shown in the 
inset of Fig. 10(b). There are several points of interest here. First, there is an abrupt change of both a and b at ∼ 25% K 
content (marked by a vertical line), reflecting that the temperature dependence of C66 but not of T1 T changes abruptly. b is 
found to be close to zero just before the structural transition disappears, which is similar to the Ba(Fe1−xCox)2As2 system. 
Beyond this concentration, b is negative indicating that the systems tends to a non-nematic magnetic order. Interestingly, 
the magnetic ground state of Ba1−xKxFe2As2 close to this K concentration seems, indeed, to be tetragonal and it would be 
fascinating to study NMR and shear modulus in detail for the respective substitution range. The parameter a also shows 
a strong dependence on the K content, while it is roughly independent of the Co content. Examining the scaling relation 
(Eq. (15)) shows that the parameter a renormalizes the magnitude of T1 T . The strong increase of a with doping reflects 
that the high-temperature values of 1/T1 T increase significantly with K content, which might reflect either a change in 
the hyperfine coupling (as would be correctly captured by a [26]) or a strongly doping-dependent background contribution. 
Note that 1/T1T takes the largest value of all samples for pure KFe2As2 [142], even though it is supposedly far away from 
a magnetic instability.

7.3. Shear-modulus softening and magnetic fluctuations in FeSe

As described in the introduction, the iron-based superconductor FeSe is particularly interesting with respect to the rela-
tion between structure and magnetism. In particular, its large paramagnetic, orthorhombic (i.e. nematic) phase makes FeSe 
an interesting test case to study the origin of nematicity. As discernable from Figs. 4 and 5, Y[110](T ) of FeSe is very similar 
to that of underdoped Ba(Fe1−xCox)2As2. In Fig. 11, we compare the two systems in detail. Curiously, the Y [110] and χϕ

values of FeSe are nearly identical to those of Ba(Fe0.97Co0.03)2As2, which has a similar Ts [27]. The nearly identical temper-
ature dependences indicate that the coupling λ2/aC66,0 has the same value in FeSe and in underdoped Ba(Fe1−xCox)2As2, 
which is remarkable considering the differences between the two systems.

In light of this similarity of Young’s modulus, it is somewhat surprising to find that the evidence for spin fluctua-
tions from the spin–lattice relaxation data of FeSe is much less pronounced than in the Ba(Fe1−xCox)2As2 system [69,27]
(Fig. 11(b)). In contrast to underdoped Ba(Fe1−xCox)2As2, 1/T1T of FeSe shows an increase upon cooling only below Ts
and, actually, decreases upon cooling from room temperature down to Ts. This drastic difference already suggests that 
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Fig. 12. (a) NMR spectral shift Kα and (b) spin–lattice relaxation rate divided by temperature 1/T1 T of single-crystalline FeSe with the field direction, α, 
in the ab plane (average of a and b axis in the orthorhombic state) and along the c axis. (c) shows a plot of √1/T1 T vs. Kα , with the temperature as an 
implicit parameter indicated in units of K. The straight lines correspond to the Fermi-liquid-type Korringa relation (Eq. (16)), deviations from which show 
the emergence of a spin-fluctuation contribution. Such an additional contribution is evident only below Ts. The thin lines are a guide to the eye.

spin fluctuations may not be the origin of the diverging nematic susceptibility in FeSe. In order to exclude the possibil-
ity that a strongly temperature-dependent “intraband” background contribution hampers the determination of the relevant 
(1/T1T )inter and, hence, the scaling analysis in FeSe, the NMR data have been analyzed in detail (see Fig. 12, [27]).

Fig. 12(a, b) show the spectral shift K α and 1/T1 T of a collection of ∼ 10 single crystals of FeSe, measured in a field of 
9 T with the field direction α both in-plane and along the c axis. K α has a pronounced temperature dependence, which can 
presumably be explained in a Fermi-liquid picture by the small Fermi energy [144] found in FeSe [76,75,127,128]. Since K
and 1/T1T are related by the Korringa relation for a Fermi liquid(

1

T1T

)
FL

∝ K 2
spin (16)

the temperature-dependent K α will lead to a temperature-dependent 1/T1 T . In order to isolate a possible contribution 
from spin fluctuations to 1/T1 T , we tested Eq. (16) by plotting 

√
1/T1T vs. K α with temperature as an implicit parameter in 

Fig. 12(c). For both field directions, we found a linear relation between the two quantities, which shows that the Fermi-liquid 
Korringa relation is indeed satisfied down to Ts. Hence, this analysis shows the absence of any measurable spin-fluctuation 
contribution to 1/T1 T for T > Ts, in strong contrast to underdoped BaFe2As2. This means that such spin fluctuations cannot 
be the origin of the shear-modulus softening and, in consequence, the structural transition and nematicity in FeSe, and 
it is likely that the alternative orbital order drives the structural transition, as also suggested by ARPES studies [75,77]. 
A similar conclusion was reached by another NMR work by Baek et al. [73]. Curiously, the nematic susceptibility χϕ of 
underdoped Ba(Fe1−xCox)2As2 and FeSe is very similar, which may raise doubt on the magnetic origin of nematicity in 
Ba(Fe1−xCox)2As2 as well. Finally, the NMR data on FeSe (Figs. 11 and 12) seem to suggest that the structural transition 
at Ts triggers the emergence of spin fluctuations. However, there is no such correlation under hydrostatic pressure, which 
enhances spin fluctuations [69], but suppresses Ts [82–84]. This result suggests an unusual relation between magnetic order 
and the structural transition in FeSe.

As we pointed out previously [27], inelastic neutron scattering experiments are needed to determine the nature of the 
magnetic fluctuations, and very recently the first of such experiments have been reported [78,79]. Surprisingly, these studies 
provide evidence of magnetic stripe-like (π, 0) fluctuations in FeSe, similar to the 122 compounds. As in the other Fe-based 
materials, these magnetic fluctuations are found to occur already above Ts , in apparent contradiction to the NMR results. 
There is, however, evidence for a spin gap-like feature below ∼ 2.5 meV in the neutron data already at 110 K [79], which 
can explain the absence of spin fluctuations in the NMR experiment, a probe that is sensitive only to the low-energy fluc-
tuations. It is, hence, conceivable that those spin fluctuations can drive the structural transition of FeSe according to the 
spin-nematic scenario, without the scaling of shear modulus and NMR spin–lattice relaxation rate. However, the neutron 
experiments, which have been performed both on polycrystalline [78] and single-crystalline material [79], are not fully 
consistent with each other. In Ref. [78], the strength of the magnetic signal is temperature independent between 8 K and 
104 K, whereas a strong temperature dependence is observed in Ref. [79]. These differences may also reflect differences in 
samples. The properties of FeSe samples depend strongly on the preparation technique. In particular, the samples prepared 
using a floating-zone technique used in Ref. [79] have undergone a phase transformation to the tetragonal, superconducting 
β-FeSe phase on cooling to room temperature. Such samples are not single phase [145] and do not show a clear tetragonal-
to-orthorhombic structural transition in the resistivity [145]. The samples prepared by solid-state synthesis used in Ref. [78]
show an unusual difference between their zero-field-cooled and field-cooled magnetic susceptibility values around Ts [78], 
which is different from the case of vapor-grown crystals [70]. Hence, the issue seems not fully resolved yet and more careful 
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neutron experiments on low-temperature vapor-grown crystals are still desirable. Finally, we mention that these puzzling 
features of FeSe, i.e. the nematic phase and the absence of magnetic order, have attracted the attention of theorists, and 
there are now several different proposed theoretical scenarios, including strong magnetic frustration [88], spin-quadropolar 
order [87], the formation of a quantum paramagnet [89], and charge–current density wave [91].

8. Summary and outlook

In this review we have compared the electronic nematic susceptibility of various iron-based superconducting materi-
als derived from measurements of the shear modulus, the elastoresistivity, and the Raman response function. Particular 
emphasis has been put on our own studies of the Young modulus in Ba(Fe1−xCox)2As2, Ba1−xKxFe2As2 and FeSe obtained 
via a three-point-bending technique in a capacitance dilatometer. In a Landau formalism, in which an electronic nematic 
order parameter drives the structural transition via bilinear coupling to the orthorhombic lattice distortion, the nematic 
susceptibility was obtained from the elastic data. The relation of this “thermodynamic” nematic susceptibility to spin- and 
orbital degrees of freedom is found to be intricate, and may be different for the different iron-based systems. Notably, the 
nematic susceptibility from the shear-modulus data seems to be closely related to the orbital nematic susceptibility from 
electronic Raman scattering in all the systems. On the other hand, the elastoresistivity behaves somewhat differently, in 
particular for optimally doped Ba1−xKxFe2As2. The excellent scaling of shear-modulus softening and spin–lattice relaxation 
rate 1/T1 in both Ba(Fe1−xCox)2As2 and Ba1−xKxFe2As2 supports the notion that the structural transition is driven by mag-
netic fluctuations. FeSe seems to be an unusual case, in that there is no spin-fluctuation contribution to 1/T1 above the 
structural transition, even though the nematic susceptibility of FeSe and underdoped Ba(Fe1−xCox)2As2 have a very similar 
temperature dependence, suggesting the importance of orbital degrees of freedom. However, very recent inelastic neutron 
scattering experiments suggest that spin fluctuations in FeSe are similar to those in the BaFe2As2-based systems. Further 
neutron studies on high-quality vapor-grown FeSe crystals are thus highly desirable.

The interrelationship of the various types of coupled order in iron-based systems—e.g., structural, orbital, magnetic and 
superconducting—has turned out to be a very rich field of study, and electronic nematicity has grown into one of the most 
intensively studied concepts in the field of iron-based superconductivity. The relationship between nematic fluctuations and 
superconductivity remains an interesting and open problem. Recently, evidence of a nematic resonance in the supercon-
ducting state was presented in Raman scattering experiments [146], suggesting a close link between nematic fluctuations 
and superconductivity. Further, the enhancement of superconductivity near a nematic quantum critical point has been in-
vestigated [147]. We believe that in order to obtain further insight into the microscopic origin of nematicity and its possible 
relation to superconductivity, the study of systems in which structural and magnetic transitions do not closely follow each 
other is particularly promising. In this context, FeSe and the magnetic C4 phase in hole-doped BaFe2As2 have recently 
attracted a great deal of attention and may very well hold further surprises in the near future.
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