
Editorial: Nematicity in
iron-based superconductors

Qisi Wang1*, Lara Fanfarillo2,3* and Anna E. Böhmer4,5*
1Physik-Institut, Universität Zürich, Zürich, Switzerland, 2International School for Advanced Studies
SISSA/ISAS, Department of Physics, Trieste, Italy, 3Department of Physics, University of Florida,
Gainesville, FL, United States, 4Lehrstuhl für Experimentalphysik IV, Fakultät für Physik und Astronomie,
Ruhr-Universität Bochum, Bochum, Germany, 5Institute for Quantum Materials and Technologies,
Karlsruhe Institute of Technology, Karlsruhe, Germany

KEYWORDS

iron-based superconductors, nematicity, electronic anisotropy, orbital nematicity,
spin nematicity, orbital ordering, nematic susceptibility, nematic fluctuations

Editorial on the Research Topic

Nematicity in iron-based superconductors

In iron-based materials, nematicity is a commonly observed symmetry-breaking state

that exists in proximity to superconductivity. The nematic instability is associated with a

structural transition that lowers the symmetry of the lattice and characterized by both the

development of anisotropy in transport and electronic properties as well as orbital-

dependent splitting in the electronic bands. The variety of experimental signatures

characterizing the nematic state allowed investigations with diverse experimental

probes that throughout the past decade uncovered multiple surprising results. Yet,

key questions regarding the origin of nematicity remain unsettled as the spin, orbital,

and lattice degrees of freedom are intimately coupled [1].

The current Research Topic compiles the latest works that tackle both the origin and

characterization of the nematic phase in iron-based materials. The contributions mainly

focus on the analysis of doped compounds of the “122” group (e.g., BaFe2As2) including

the heavily hole-doped ones, in which a new type of nematic instability has been recently

reported [2], and on FeSe, that provides the unique opportunity to study the nematic

phase within a wide range of temperature in the absence of long-range magnetic ordering

[3]. In this way, we highlight the forefront of the research on nematicity in iron-based

superconductors.

The Research Topic presents three review papers and six experimental and theoretical

contributions collected from the front of original research.

Degiorgi reviews optical studies of FeSe and Ba0.6K0.4Fe2As2. The study of the

broadband optical anisotropy in FeSe suggests that spin fluctuations together with the

high-energy orbital ordering assume a dominant role in the onset of nematicity. For

optimally doped Ba0.6K0.4Fe2As2, it is shown that the stress-induced optical anisotropy

occurs only below the superconducting transition temperature. These findings

demonstrate an intimate relation between spin fluctuations, orbital nematicity, and

superconductivity.
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Rana and Furukawa present a mini-review of their 77Se

nuclear magnetic resonance (NMR) studies on FeSe, when the

compound is tuned by application of physical pressure, chemical

pressure, or a combination of both. Indeed, FeSe exhibits a

complex T-x-p phase diagram as physical pressure, p, is

applied or sulfur is substituted for selenium in FeSe1-xSx
(chemical pressure), including magnetic order and abundant

magnetic fluctuations. Rana and Furukawa find that, while

antiferromagnetic fluctuations appear to enhance Tc in

general, the effect is stronger in the absence of nematicity.

Rhodes et al. present a detailed review of the evolution of the

Fermi surface of FeSe in the nematic phase, addressing the

problematic issue of the “missing electron pocket.” It is still

unclear how the experimentally determined Fermi surface near

the M point of the Brillouin zone evolves from having two

electron pockets in the tetragonal state, to exhibiting just a

single electron pocket in the nematic state [4]. In this review,

Rhodes et al. collect recent angle-resolved photoemission

spectroscopy (ARPES) and scanning tunneling microscopy

works to analyze the orbital dependent band-shifts in the

nematic phase, as well as theoretical modeling based on the

inclusion of an additional nematic order parameter having “xy”

orbital character.

Bötzel and Eremin analyze the magnetic anisotropy of FeSe

using the same phenomenological model reviewed in Rhodes

et al. The model combines the usual nematic order parameter

based on the differentiation of the xz and yz orbitals with a non-

local xy nematic order parameter. The interesting result is that

the inclusion of the latter successfully describes not only the

absence of the Y-electron pocket, but also the temperature

dependence of the anisotropy on the spin susceptibility.

Onari and Kontani discuss a unified picture of nematicity for

iron-based superconductors presenting a theoretical description

based on a self-consistent diagrammatic approximation. The

model allows for the description of several experimental

signatures of nematicity both in FeSe-based superconductors

and in heavily hole-doped “122”-type materials, which derive

from BaFe2As2 by doping towards the end-members K/Rb/

CsFe2As2.

The controversial issue of nematicity in heavily hole-doped

“122” materials is also the focus of Hong et al. that discuss the

Research Topic from the experimental point of view. Whereas

nematic orders far from a magnetic instability have been claimed

in (Ba,Rb)Fe2As2, it is still debated whether the elastoresistance of

these compounds is a signature of a new nematic instability.

Hong et al. present elastoresistance data for amultitude of heavily

hole-doped 122-systems, which show a divergence of

elastoresistance. However, they present a new interpretation

based on the well-known Lifshitz transition in the system

unrelated to nematicity. This work adds a new element to the

interpretation of elastoresistance, an experimental quantity that

has impacted heavily in the investigation of nematicity.

Curro et al. present an NMRwork, on the distribution of spin

fluctuations in doped pnictides and the effect of uniaxial strain

and strain hysteresis. They find that the spin lattice relaxation

rate is inhomogeneous, and the spatial distribution of local spin

fluctuations correlates with the nematic susceptibility. Their

results suggest that a nematic glass behavior is induced by

quenched strain fields associated with doping atoms.

Gong et al. present a systematic study of nematic fluctuations

in the non-superconducting BaFe1.9−xNi0.1CrxAs2 system

combining electronic transport, ARPES, and inelastic neutron

scattering measurements. By monitoring the evolution of the

nematic fluctuations as a function of Cr doping, a strong

correlation between the resistivity- and spin nematicity is

revealed, while the orbital anisotropy behaves differently.

Their results suggest the importance of the interplay between

local moments and itinerant electrons for understanding the

nematic fluctuations.

Kreisel et al. theoretically analyze the anisotropy of the

spin excitations in FeSe, focusing on the high-energy range as

the one detected by resonant inelastic x-ray scattering (RIXS)

experiments. They consider an itinerant model previously

used to describe the spin-excitation anisotropy as measured

by neutron scattering measurements, with magnetic

fluctuations included within the random phase

approximation. The calculated cross section exhibits

overall agreement with the data of recent RIXS

experiments on FeSe [5], where a theoretical interpretation

in terms of local moments was discussed. The work by Kreisel

et al. proves again that nematic phenomenology presents

some aspects that can be described either via an itinerant

or a local spin scenario, suggesting a non-trivial role of

electronic correlations in affecting the metallic state of

iron-based superconductors [6].

This editorial conveys the objectives of the above nine articles

that represent the latest progress in the research of nematicity in

iron-based superconductors. We wish to thank all the authors

and referees for their contributions and hope for more future

studies on this Research Topic.
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