14 research outputs found

    Plantas como biorreatores : recuperação e purificação de aprotinina recombinante a partir de semente de milho transgenico

    Get PDF
    Orientadores : Everson Alves Miranda, Zivko L. NikolovTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuimicaResumo: A expressão em plantas transgênicas é potencialmente uma das formas mais econômicas de produção em larga escala de peptídeos e proteínas de emprego farmacêutico. Dentre as vantagens estão a capacidade de estocagem da biomolécula por longo período em sementes, o baixo custo de produção e escalonamento (basta aumentar a área plantada) e o pequeno risco de contaminação por agentes patogênicos aos humanos. Contudo, existem poucos trabalhos visando a avaliar o potencial das plantas transgênicas do ponto de vista da recuperação e purificação de biomoléculas (RPB) em larga escala. Neste trabalho foi estudada a recuperação e purificação de aprotinina recombinante, um inibidor de proteases utilizado como fármaco, produzida em sementes de milho transgênico. Mais do que desenvolver metodologias de purificação de uma proteína específica, este trabalho objetivou contribuir com novos conhecimentos sobre a utilização da planta de milho como biorreator. Condições de extração visando a maximização da eficiência de extração da aprotinina recombinante e minimização da extração de impurezas foram estudas. Destes estudos, a condição de extração a pH 3,0 e força iônica de 200 mM foi a que se mostrou mais adequada. A aprotinina recombinante, juntamente com um inibidor de tripsina naturalmente encontrado em sementes de milho (inibidor de tripsina do milho - ITM) foi capturada do extrato aquoso da semente através do uso de cromatografia em resina de agarose com tripsina imobilizada. Duas diferentes rotas cromatográficas foram empregadas para a separação entre os inibidores e purificação final da aprotinina: cromatografia em resina agarose-IDA-Cu2+ e cromatografia em resina SP Sepharose. A confirmação da purificação da aprotinina recombinante foi realizada através de seqüenciamento N-terminal, SDS-PAGE e HPLC, sendo que este último método de análise indicou que purezas tão elevadas quanto 97% foram alcançadas. Uma vez que o ITM também foi purificado, o processo aqui estudado tem como vantagem a possibilidade de sua co-produção. Finalmente, os resultados deste trabalho vem corroborar com pesquisas anteriores que indicam o potencial do uso de plantas como biorreatoresAbstract: Expression in transgenic plants is potentially one of the most economical systems for large-scale production of valuable peptide and protein products. Advantages of the use of plants as bioreactors include the low cost of growing a large amount of biomass, easy scale-up (increase of plant acreage), natural storage organs (seeds and tubers), and the reduced risk on propagating human or animal pathogens. However, the downstream processing of recombinant proteins produced in plants has not been extensively studied. In this work, we studied the extraction and purification of recombinant aprotinin, a protease inhibitor used as a therapeutic compound, produced in transgenic com seed. More than just studing the recovery and purification of a recombinant protein, the aim of this work was to add new information about the use of transgenic com as bioreactor. Conditions for extraction from transgenic com meal that maximize aprotinin concentration and its fraction of the total soluble protein in the extract were determined as pH 3.0 and 200 mM NaCI. Aprotinin in this extract, together with a native com trypsin inhibitor (CTI) was captured using a trypsin-agarose column. These two inhibitors were separated by using two different approaches: immobilized metal ion affinity chromatography IMAC (agarose-IDA-Cu2+ resin) and cation-exchange chromatography (SP Sepharose resin). The high purity of the recombinant aprotinin was verified by SDSPAGE and N-terminal sequencing. Reverse phase HPLC analysis of the recombinant aprotinin purified by IMAC suggested a purity as greater as 97%. Since CTI was also purified, the recovery and purification process studied has the advantage of possible CTI coproduction. Finally, the work presented here introduces additional information on the recovery and purification of recombinant proteins produced in plants and corroborates with past research on the potential use of plants as bioreactorsDoutoradoDesenvolvimento de Processos BiotecnologicosDoutor em Engenharia Químic

    Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery

    Get PDF
    The success of viruses in the delivery of the viral genome to target cells relies on the evolutionary selection of protein-based domains able to hijack the intermolecular interactions through which cells respond to intra- and extracellular stimuli. In an effort to mimic viral infection capabilities during non-viral gene delivery, a modular recombinant protein named T-Rp3 was recently developed, containing a DNA binding domain, a dynein molecular motor interacting domain, and a TAT-derived transduction domain. Here, we analyzed at the microscopic level the mechanisms behind the cell internalization and intracellular trafficking of this highly efficient modular protein vector. We found that the protein has the ability to self-assemble in discrete protein nanoparticles resembling viral capsids, to bind and condense plasmid DNA (pDNA), and to interact with eukaryotic cell membranes. Confocal and single particle tracking assays performed on living HeLa cells revealed that the T-Rp3 nanoparticles promoted an impressive speed of cellular uptake and perinuclear accumulation. Finally, the protein demonstrated to be a versatile vector, delivering siRNA at efficiencies comparable to Lipofectamine™. These results demonstrate the high potential of recombinant modular proteins with merging biological functions to fulfill several requirements needed to obtain cost-effective non-viral vectors for gene-based therapies

    Protein nanoparticles are nontoxic, tuneable cell stressors

    Get PDF
    Aim: nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. - Results: by repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. - Conclusion: the capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning

    Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides

    Get PDF
    Arginine-rich protein motifs have been described as potent cell-penetrating peptides (CPPs) but also as rather specific ligands of the cell surface chemokine receptor CXCR4, involved in the infection by the human immunodeficiency virus (HIV). Polyarginines are commonly used to functionalize nanoscale vehicles for gene therapy and drug delivery, aimed to enhance cell penetrability of the therapeutic cargo. However, under which conditions these peptides do act as either unspecific or specific ligands is unknown. We have here explored the cell penetrability of differently charged polyarginines in two alternative presentations, namely as unassembled fusion proteins or assembled in multimeric protein nanoparticles. By this, we have observed that arginine-rich peptides switch between receptor-mediated and receptor-independent mechanisms of cell penetration. The relative weight of these activities is determined by the electrostatic charge of the construct and the oligomerization status of the nanoscale material, both regulatable by conventional protein engineering approaches.Peer ReviewedPostprint (author's final draft

    Recuperação de aprotinina a partir de efluente de processamento industrial de insulina atraves de absorção por afinidade

    No full text
    Orientador: Everson Alves MirandaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuimicaResumo: A aprotinina é um inibidor de proteases presente em alguns órgãos bovinos como pâncreas, fígado e pulmão. Neste trabalho, as enzimas tripsina e quimotripsina (suínas e bovinas) foram utilizadas como ligantes imobilizados em matriz de agarose visando a recuperação de aprotinina presente em efluente de processamento industrial de insulina através de adsorção por afInidade. As quatro enzimas foram imobilizadas em agarose ativada com bisoxirana e avaliadas quanto a capacidade de adsorção de aprotinina pura, o que permitiu a seleção da tripsina suína e quimotripsina bovina como os ligantes de maior efIciência. Estas proteases foram ainda imobilizadas com sucesso em gel de agarose previamente ativado com brometo de cianogênio, o que permitiu a comparação entre dois métodos distintos de ativação e imobilização de enzimas. O gel de agarose ativado com brometo de cianogênio com tripsina suína imobilizada foi o que apresentou maior capacidade de adsorção de aprotinina pura (12,6 mg!g). Estudo-se, para ambas as enzimas, a influência do pH e força iônica na adsorção e dessorção da aprotinina, em faixas próximas aos valores encontrados na literatura, através de planejamento estatístico experimental. A influência do pH mostrou ser menor para o processo de adsorção e maior para a dessorção, ocorrendo o inverso para a influência da força iônica, principalmente quando o ligante utilizado foi a tripsina. Estudos de adsorção em coluna de leito fIxo para recuperação do inibidor presente em efluente do processamento industrial da insulina produzida a partir de pâncreas bovino constataram a presença de inibição que pôde ser recuperada utilizando ambas as enzimas como ligantes. A análise do poder de inibição de tripsina e quimotripsina, bem como os ensaios de eletroforese das frações dessorvidas das colunas indicam fortemente que o inibidor recuperado é aprotininaAbstract: Aprotinin is a protease inhibitor found in bovine organs like pancreas, lung and liver. In this work, trypsin and chymotrypsin (bovine and swine) were immobilized in agarose and used as ligands for aprotinin recovery from industrial insulin process wastewater via affinity adsorption. The enzymes were immobilized on bisoxirane activated agarose and evaluated by their aprotinin adsorption capacity. Swine trypsin and bovine chymotrypsin were chosen as the most efficient ligands. These proteases were also immobilized on cianogen bromide activated agarose allowing the comparison of the two activation methods. Swine trypsin immobilized on cianogen bromide activated agarose had the highest aprotinin adsorption capacity (12,6 mglg). The effects of pH and ionic strength on aprotinin adsorption and desorption for immobilized swine trypsin and bovine chymotrypsin were studied using a experimental design method. The effect of the ionic strength was higher than that of the pH on aprotinin adsorption. The effect of pH was the most significant on the aprotinin desorption. Fixed bed adsorption studies with insulin process wastewater showed that inhibition could be recovered using both enzymes as ligands. Analysis of trypsin and chymotrypsin inhibition and electrophoresis assay of chromatographic fractions strongly suggested that the inhibitor recovered is aprotininMestradoDesenvolvimento de Processos BiotecnologicosMestre em Engenharia Químic

    Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery

    No full text
    The success of viruses in the delivery of the viral genome to target cells relies on the evolutionary selection of protein-based domains able to hijack the intermolecular interactions through which cells respond to intra- and extracellular stimuli. In an effort to mimic viral infection capabilities during non-viral gene delivery, a modular recombinant protein named T-Rp3 was recently developed, containing a DNA binding domain, a dynein molecular motor interacting domain, and a TAT-derived transduction domain. Here, we analyzed at the microscopic level the mechanisms behind the cell internalization and intracellular trafficking of this highly efficient modular protein vector. We found that the protein has the ability to self-assemble in discrete protein nanoparticles resembling viral capsids, to bind and condense plasmid DNA (pDNA), and to interact with eukaryotic cell membranes. Confocal and single particle tracking assays performed on living HeLa cells revealed that the T-Rp3 nanoparticles promoted an impressive speed of cellular uptake and perinuclear accumulation. Finally, the protein demonstrated to be a versatile vector, delivering siRNA at efficiencies comparable to Lipofectamine™. These results demonstrate the high potential of recombinant modular proteins with merging biological functions to fulfill several requirements needed to obtain cost-effective non-viral vectors for gene-based therapies

    Protein nanoparticles are nontoxic, tuneable cell stressors

    No full text
    Aim: nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. - Results: by repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. - Conclusion: the capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning

    Protein nanoparticles are nontoxic, tuneable cell stressors

    No full text
    Aim: nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. - Results: by repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. - Conclusion: the capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning
    corecore