807 research outputs found

    First Evidence of Genetic Association Between AKT2 and Polycystic Ovary Syndrome

    Get PDF
    OBJECTIVE—Insulin resistance has been reported in up to 70% of women with polycystic ovary syndrome (PCOS). Physiologic and genetic data currently implicate post–insulin receptor signaling defects in substrates such as glycogen synthase kinase 3β (GSK3β). The AKT2 gene was chosen as a candidate for PCOS because its product affects glucose metabolism and mitogenic signaling, interacts with GSK3β, and mediates cell survival in the ovary

    FTO and MC4R Gene Variants Are Associated with Obesity in Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women. It is also associated with metabolic disturbances that place women at increased risk for obesity and type 2 diabetes. There is strong evidence for familial clustering of PCOS and a genetic predisposition. However, the gene(s) responsible for the PCOS phenotypes have not been elucidated. This two-phase family-based and case-control genetic study was designed to address the question of whether SNPs identified as susceptibility loci for obesity in genome-wide association studies (GWAS) are also associated with PCOS and elevated BMI. Members of 439 families having at least one offspring with PCOS were genotyped for 15 SNPs previously shown to be associated with obesity. Linkage and association with PCOS was assessed using the transmission/disequilibrium test (TDT). These SNPs were also analyzed in an independent case-control study involving 395 women with PCOS and 176 healthy women with regular menstrual cycles. Only one of these 15 SNPs (rs2815752 in NEGR1) was found to have a nominally significant association with PCOS (χ2 = 6.11, P = 0.013), but this association failed to replicate in the case-control study. While not associated with PCOS itself, five SNPs in FTO and two in MC4R were associated with BMI as assessed with a quantitative-TDT analysis, several of which replicated association with BMI in the case-control cohort. These findings demonstrate that certain SNPs associated with obesity contribute to elevated BMI in PCOS, but do not appear to play a major role in PCOS per se. These findings support the notion that PCOS phenotypes are a consequence of an oligogenic/polygenic mechanism

    Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan

    Get PDF
    Polycystic ovary syndrome (PCOS) is of clinical and public health importance as it is very common, affecting up to one in five women of reproductive age. It has significant and diverse clinical implications including reproductive (infertility, hyperandrogenism, hirsutism), metabolic (insulin resistance, impaired glucose tolerance, type 2 diabetes mellitus, adverse cardiovascular risk profiles) and psychological features (increased anxiety, depression and worsened quality of life). Polycystic ovary syndrome is a heterogeneous condition and, as such, clinical and research agendas are broad and involve many disciplines. The phenotype varies widely depending on life stage, genotype, ethnicity and environmental factors including lifestyle and bodyweight. Importantly, PCOS has unique interactions with the ever increasing obesity prevalence worldwide as obesity-induced insulin resistance significantly exacerbates all the features of PCOS. Furthermore, it has clinical implications across the lifespan and is relevant to related family members with an increased risk for metabolic conditions reported in first-degree relatives. Therapy should focus on both the short and long-term reproductive, metabolic and psychological features. Given the aetiological role of insulin resistance and the impact of obesity on both hyperinsulinaemia and hyperandrogenism, multidisciplinary lifestyle improvement aimed at normalising insulin resistance, improving androgen status and aiding weight management is recognised as a crucial initial treatment strategy. Modest weight loss of 5% to 10% of initial body weight has been demonstrated to improve many of the features of PCOS. Management should focus on support, education, addressing psychological factors and strongly emphasising healthy lifestyle with targeted medical therapy as required. Monitoring and management of long-term metabolic complications is also an important part of routine clinical care. Comprehensive evidence-based guidelines are needed to aid early diagnosis, appropriate investigation, regular screening and treatment of this common condition. Whilst reproductive features of PCOS are well recognised and are covered here, this review focuses primarily on the less appreciated cardiometabolic and psychological features of PCOS

    Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome : a systematic review and meta-analysis

    Get PDF
    Aims/hypothesis FTO gene single nucleotide polymorphisms (SNPs) have been shown to be associated with obesity-related traits and type 2 diabetes. Several small studies have suggested a greater than expected effect of the FTO rs9939609 SNP on weight in polycystic ovary syndrome (PCOS). We therefore aimed to examine the impact of FTO genotype on BMI and weight in PCOS. Methods A systematic search of medical databases (PubMed, EMBASE and Cochrane CENTRAL) was conducted up to the end of April 2011. Seven studies describing eight distinct PCOS cohorts were retrieved; seven were genotyped for SNP rs9939609 and one for SNP rs1421085. The per allele effect on BMI and body weight increase was calculated and subjected to meta-analysis. Results A total of 2,548 women with PCOS were included in the study; 762 were TT homozygotes, 1,253 had an AT/CT genotype, and 533 were AA/CC homozygotes. Each additional copy of the effect allele (A/C) increased the BMI by a mean of 0.19 z score units (95% CI 0.13, 0.24; p = 2.26 × 10−11) and body weight by a mean of 0.20 z score units (95% CI 0.14, 0.26; p = 1.02 × 10−10). This translated into an approximately 3.3 kg/m2 increase in BMI and an approximately 9.6 kg gain in body weight between TT and AA/CC homozygotes. The association between FTO genotypes and BMI was stronger in the cohorts with PCOS than in the general female populations from large genome-wide association studies. Deviation from an additive genetic model was observed in heavier populations. Conclusions/interpretation The effect of FTO SNPs on obesity-related traits in PCOS seems to be more than two times greater than the effect found in large population-based studies. This suggests an interaction between FTO and the metabolic context or polygenic background of PCOS

    Harnessing Expression Data to Identify Novel Candidate Genes in Polycystic Ovary Syndrome

    Get PDF
    Novel pathways in polycystic ovary syndrome (PCOS) are being identified in gene expression studies in PCOS tissues; such pathways may contain key genes in disease etiology. Previous expression studies identified both dickkopf homolog 1 (DKK1) and DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1) as differentially expressed in PCOS tissue, implicating them as candidates for PCOS susceptibility. To test this, we genotyped a discovery cohort of 335 PCOS cases and 198 healthy controls for three DKK1 single nucleotide polymorphisms (SNPs) and four DNAJB1 SNPs and a replication cohort of 396 PCOS cases and 306 healthy controls for 1 DKK1 SNP and 1 DNAJB1 SNP. SNPs and haplotypes were determined and tested for association with PCOS and component phenotypes. We found that no single nucleotide polymorphisms were associated with PCOS risk; however, the major allele of rs1569198 from DKK1 was associated with increased total testosterone (discovery cohort P = 0.0035) and dehydroepiandrosterone sulfate (replication cohort P = 0.05). Minor allele carriers at rs3962158 from DNAJB1 had increased fasting insulin (discovery cohort P = 0.003), increased HOMA-IR (discovery cohort P = 0.006; replication cohort P = 0.036), and increased HOMA-%B (discovery cohort P = 0.004). Carriers of haplotype 2 at DNAJB1 also had increased fasting insulin, HOMA-IR, and HOMA-%B. These findings suggest that genetic variation in DKK1 and DNAJB1 may have a role in the hyperandrogenic and metabolic dysfunction of PCOS, respectively. Our results also demonstrate the utility of gene expression data as a source of novel candidate genes in PCOS, a complex and still incompletely defined disease, for which alternative methods of gene identification are needed

    Role of Haptoglobin in Polycystic Ovary Syndrome (PCOS), Obesity and Disorders of Glucose Tolerance in Premenopausal Women

    Get PDF
    alleles of the haptoglobin α–chain polymorphism reduce the anti-oxidant properties and increase the pro-inflammatory actions of this acute-phase protein in a gene-dosage fashion. We hypothesized that the haptoglobin polymorphism might contribute to the increased oxidative stress and low-grade chronic inflammation frequently associated with polycystic ovary syndrome, obesity, and abnormalities of glucose tolerance.<0.001), yet no association was found between obesity and haptoglobin genotypes. No differences were observed in haptoglobin levels or genotype frequencies depending on glucose tolerance. Fifty percent of the variation in serum haptoglobin concentrations was explained by the variability in serum C-reactive protein concentrations, BMI, insulin sensitivity and haptoglobin genotypes. alleles suggests that the anti-oxidant and anti-inflammatory properties of haptoglobin may be reduced in these patients

    Estimation of the national disease burden of influenza-associated severe acute respiratory illness in Kenya and Guatemala : a novel methodology

    Get PDF
    Background: Knowing the national disease burden of severe influenza in low-income countries can inform policy decisions around influenza treatment and prevention. We present a novel methodology using locally generated data for estimating this burden. Methods and Findings: This method begins with calculating the hospitalized severe acute respiratory illness (SARI) incidence for children <5 years old and persons ≥5 years old from population-based surveillance in one province. This base rate of SARI is then adjusted for each province based on the prevalence of risk factors and healthcare-seeking behavior. The percentage of SARI with influenza virus detected is determined from provincial-level sentinel surveillance and applied to the adjusted provincial rates of hospitalized SARI. Healthcare-seeking data from healthcare utilization surveys is used to estimate non-hospitalized influenza-associated SARI. Rates of hospitalized and non-hospitalized influenza-associated SARI are applied to census data to calculate the national number of cases. The method was field-tested in Kenya, and validated in Guatemala, using data from August 2009–July 2011. In Kenya (2009 population 38.6 million persons), the annual number of hospitalized influenza-associated SARI cases ranged from 17,129–27,659 for children <5 years old (2.9–4.7 per 1,000 persons) and 6,882–7,836 for persons ≥5 years old (0.21–0.24 per 1,000 persons), depending on year and base rate used. In Guatemala (2011 population 14.7 million persons), the annual number of hospitalized cases of influenza-associated pneumonia ranged from 1,065–2,259 (0.5–1.0 per 1,000 persons) among children <5 years old and 779–2,252 cases (0.1–0.2 per 1,000 persons) for persons ≥5 years old, depending on year and base rate used. In both countries, the number of non-hospitalized influenza-associated cases was several-fold higher than the hospitalized cases. Conclusions: Influenza virus was associated with a substantial amount of severe disease in Kenya and Guatemala. This method can be performed in most low and lower-middle income countries
    corecore