35 research outputs found

    Diurnal variations in the thickness of the inner bark of tree trunk in relation to xylem water potential and phloem turgor

    Get PDF
    The inner bark plays important roles in tree stems, including radial exchange of water with the xylem and translocation of carbohydrates. Both processes affect the water content and the thickness of the inner bark on a diurnal basis. For the first time, we simultaneously measured the diurnal variations in the inner bark thickness of hinoki cypress (Chamaecyparis obtusa) by using point dendrometers and those of local xylem potential by using stem psychrometers located next to the dendrometers to determine how these variations were related to each other, to phloem turgor and carbohydrate transport. We also estimated the axial hydrostatic pressure gradient by measuring the osmolality of the sap extracted from the inner bark. The inner bark shrunk during the day and swelled during the night with an amplitude related to day-to-day and seasonal variations in climate. The relationship between changes in xylem water potential and inner bark thickness exhibited a hysteresis loop during the day with a median lag of 2 h. A phloem turgor-related signal can be retrieved from the diurnal variations in the inner bark thickness, which was higher at the upper than at the lower position along the trunk. However, a downward hydrostatic pressure gradient was only observed at dawn, suggesting diurnal variations in the phloem sap flow velocity

    Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of Alnus japonica

    Get PDF
    木の中にガスパイプライン? --ガス漏れの場所を特定せよ!--. 京都大学プレスリリース. 2022-07-15.Recent studies have suggested that in certain environments, tree stems emit methane (CH₄). This study explored the mechanism of CH₄ emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH₄ emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH₄ emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH₄ emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH₄ emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH₄ from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH₄

    Predicting effects of climate change on productivity and persistence of forest trees

    Get PDF
    Global climate change increases uncertainty in sustained functioning of forest ecosystems. Forest canopies are a key link between terrestrial ecosystems, the atmosphere, and climate. Here, we introduce research presented at the 66th meeting of the Ecological Society of Japan in the symposium “Structure and function of forest canopies under climate change.” Old-growth forest carbon stores are the largest and may be the most vulnerable to climate change as the balance between sequestration and emission could easily be tipped. Detailed structural analysis of individual large, old trees shows they are allocating wood to the trunk and crown in patterns that cannot be deduced from ground, thus can be used to more accurately quantify total forest carbon and sequestration. Slowly migrating species sensitive to novel climatic conditions will have to acclimate at the individual level. Accounting for physiological responses of trees to climate change will improve predictions of future species distributions and subsequent functioning of forest ecosystems. Field experiments manipulating temperature and precipitation show how trees compensate physiologically to mitigate for higher temperatures and drought. However, it is difficult to measure acclimation responses over long timeframes. Intraindividual trait variation is proposed as an indicator of acclimation potential of trees to future conditions and suggests that acclimation potential may vary among regional populations within a species. Integrating whole-tree structural data with physiological data offers a promising avenue for understanding how trees will respond to climatic shifts

    Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia

    Get PDF
    Radiation therapy for head and neck cancers is frequently associated with adverse effects on the surrounding normal tissue. Irreversible damage to radiation-sensitive acinar cells in the salivary gland (SG) causes severe radiation-induced xerostomia (RIX). Currently, there are no effective drugs for treating RIX. We investigated the efficacy of treatment with conditioned medium derived from stem cells from human exfoliated deciduous teeth (SHED-CM) in a mouse RIX model. Intravenous administration of SHED-CM, but not fibroblast-CM (Fibro-CM), prevented radiation-induced cutaneous ulcer formation (p < 0.0001) and maintained SG function (p < 0.0001). SHED-CM treatment enhanced the expression of multiple antioxidant genes in mouse RIX and human acinar cells and strongly suppressed radiation-induced oxidative stress. The therapeutic effects of SHED-CM were abolished by the superoxide dismutase inhibitor diethyldithiocarbamate (p < 0.0001). Notably, quantitative liquid chromatography-tandem mass spectrometry shotgun proteomics of SHED-CM and Fibro-CM identified eight proteins activating the endogenous antioxidant system, which were more abundant in SHED-CM than in Fibro-CM (p < 0.0001). Neutralizing antibodies against those activators reduced antioxidant activity of SHED-CM (anti-PDGF-D; p = 0.0001, anti-HGF; p = 0.003). Our results suggest that SHED-CM may provide substantial therapeutic benefits for RIX primarily through the activation of multiple antioxidant enzyme genes in the target tissue

    Comparing national home-keeping and the regulation of translational stem cell applications: an international perspective

    Get PDF
    A very large grey area exists between translational stem cell research and applications that comply with the ideals of randomised control trials and good laboratory and clinical practice and what is often referred to as snake-oil trade. We identify a discrepancy between international research and ethics regulation and the ways in which regulatory instruments in the stem cell field are developed in practice. We examine this discrepancy using the notion of ‘national home-keeping’, referring to the way governments articulate international standards and regulation with conflicting demands on local players at home. Identifying particular dimensions of regulatory tools – authority, permissions, space and acceleration – as crucial to national home-keeping in Asia, Europe and the USA, we show how local regulation works to enable development of the field, notwithstanding international (i.e. principally ‘western’) regulation. Triangulating regulation with empirical data and archival research between 2012 and 2015 has helped us to shed light on how countries and organisations adapt and resist internationally dominant regulation through the manipulation of regulatory tools (contingent upon country size, the state's ability to accumulate resources, healthcare demands, established traditions of scientific governance, and economic and scientific ambitions)

    Hydraulic Architecture and Function of Tall Trees

    No full text
    corecore