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Abstract Because of their overwhelming size over other
organisms, trees define the structural and energetic
properties of forest ecosystems. From grasslands to
forests, leaf area index, which determines the amount of
light energy intercepted for photosynthesis, increases
with increasing canopy height across the various ter-
restrial ecosystems of the world. In vertically well-
developed forests, niche differentiation along the vertical
gradient of light availability may promote species
coexistence. In addition, spatial and temporal differen-
tiation of photosynthetic traits among the coexisting tree
species (functional diversity) may promote complemen-
tary use of light energy, resulting in higher biomass and
productivity in multi-species forests. Trees have evolved
retaining high phenotypic plasticity because the spatial/
temporal distribution of resources in forest ecosystems is
highly heterogeneous and trees modify their own envi-
ronment as they increase nearly 1,000 times in size
through ontogeny. High phenotypic plasticity may en-
able coexistence of tree species through divergence in
resource-rich environments, as well as through conver-
gence in resource-limited environments. We propose
that the breadth of individual-level phenotypic plastic-
ity, expressed at the metamer level (leaves and shoots), is

an important factor that promotes species coexistence
and resource-use complementarity in forest ecosystems.
A cross-biome comparison of the link between plasticity
of photosynthesis-related traits and stand productivity
will provide a functional explanation for the relationship
between species assemblages and productivity of forest
ecosystems.
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Introduction

Trees are the largest organisms on Earth, and forests
hold the greatest biomass among terrestrial ecosystems
of the world. Trees are the primary producers that
generate, through photosynthesis, the energy that flows
through the food and detritus chains (Scheu 2005).
Because of their overwhelming size over other organ-
isms, trees are also the ‘‘engineers’’ (Jones et al. 1994)
that build the structure of forest ecosystems and define
its environmental and chemical properties, as well as the
‘‘habitat template’’ on which other organisms establish
(Southwood and Kennedy 1983; Takeda and Abe 2001).

Trees are remarkable because they start out as tiny
seedlings and grow to nearly 1,000 times in size during
ontogeny. In a mature forest, individuals of various sizes
coexist. Some species can acclimate to a wide range of
resource availabilities and exist in multiple generations
comprising understory seedlings to mature canopy trees.
Within the same geographic region, natural forests that
are well-developed vertically tend to hold greater
diversity of tree species and maintain higher primary
productivity than low statured forests (Franklin et al.
1989; Ishii et al. 2004). In this paper, we will review
theories related to the structural development of forest
ecosystems and how it may promote species coexistence.
We will explore how spatial and temporal differentiation
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in resource use, especially light, among coexisting tree
species may provide a functional explanation for why
stand productivity increases with increasing species
diversity. Finally, we discuss the importance of consid-
ering trait plasticity within individuals when assessing
the functional diversity of forest ecosystems.

Vertical development, ecosystem productivity,
and species diversity

From grasslands to forests, annual net primary produc-
tion increases with increasing leaf area index (LAI) across
the various terrestrial ecosystems of the world (LAI, leaf
area per unit ground area, Asner et al. 2003). This is
because the amount of light energy intercepted for pho-
tosynthesis by a plant canopy increases with increasing
LAI, i.e., the greater the leaf area that is packed into a unit
of ground area, the greater the ecosystem productivity. In
forest ecosystems, LAI tends to increase with increasing
canopy height, because biomass density (kg m�3) is rel-
atively constant across various forest types (Kira and
Shidei 1967) and thus more leaf area can be stacked ver-
tically in a tall forest. Forests with the largest LAI and
greatest biomass in the world are found in the cool-tem-
perate region of the pacific northwest coast of North
America (Franklin et al. 2002; Fujimori et al. 1976; Sillett
and Van Pelt 2007). In these forests, the canopy reaches
70–100 m in height and comprises the world’s tallest
trees. The dominant, evergreen conifer species include
some of the tallest tree species in the world: Sequoia
sempervirens (D. Don.) Endl., Pseudotsuga menziesii
(Mirb.) Franco. var. menziesii, and Picea sitchensis
(Bong.). Carr. These trees are not only tall, but extremely
long-lived and stand age may reach 800–1,000 years in
some areas (Franklin and Dyrness 1973). As a result,
great amounts of carbon are stored both above and below
ground (Harmon et al. 2004; Winner et al. 2004).

In grassland ecosystems, it has been shown experi-
mentally that productivity increases with increasing
species diversity (Hector et al. 1999; Tilman et al. 2001).
Although stand productivity tends to be higher for more
species-rich forest communities (e.g., Harmon et al.
1990; Ishii et al. 2004; Vila et al. 2003, but see Firn et al.
2007), it is difficult to obtain direct evidence supporting
the diversity-productivity theory that pertains to forest
ecosystems because, in natural forests, the various fac-
tors determining community assembly and ecosystem
productivity are often confounded (Vila et al. 2005) and
field experiments take several years to execute (Hector
et al. 2011; Pretzsch 2005; Whittaker et al. 2001). The
best test of the diversity–productivity relationship in
forest ecosystems that we are aware of is that of Hiura
(2001), who showed that species richness, LAI and total
carbon are correlated positively with each other across
38 forest plots having different disturbance histories
(Table 3 in Hiura 2001), all of which established on
relatively flat topography after a volcanic eruption ren-
dering uniform initial conditions.

A key factor linking diversity and productivity of
forest ecosystems is the vertical development of the
forest canopy (Ishii et al. 2004). Kohyama (1993) pro-
posed the forest architecture theory of species coexis-
tence, where differentiation of tree species into vertical
strata promotes their coexistence through the trade-off
between height growth and reproductive output (Ko-
hyama and Takada 2009). Although in reality, species
are not necessarily segregated into distinct strata (Parker
and Brown 2000), divergence of tree species along the
vertical gradient of light availability in a vertically well-
developed forest canopy represents niche differentiation
along a gradient of resource availability (Fig. 1). In
vertically well-developed forests, niche differentiation
may enhance both species diversity and stand produc-
tivity (Gravel et al. 2010). In the next section, we discuss
the underlying mechanism that could explain how this
may be possible.

Complementary resources use and functional diversity

A proposed mechanism for increased productivity with
increasing species diversity is that it leads to comple-
mentary resource use (Hector 1998; Hooper 1998; Naeem
et al. 1994). Complementarity is defined as the increase in
resource-use efficiency of a mixed species community
compared with that of a monoculture as a result of
reduced niche overlap and competitive relaxation (Yachi
and Loreau 2007). Because plants are the primary pro-
ducers that define the structural and energetic properties
of terrestrial ecosystems, the diversity of traits concerned
with light capture and primary production are important
determinants of ecosystem productivity. In grassland
ecosystems, the presence of contrasting traits among
species, such as foliar architecture and shade tolerance,
promotes light-use complementarity and contributes to

Light availability
 

Fig. 1 Divergence of tree species along the vertical gradient of light
availability in a vertically well-developed forest canopy represents
niche differentiation along a gradient of resource availability, which
may enhance both species diversity and stand productivity
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increasing primary productivity (Vojtech et al. 2008;
Zhang et al. 2012). Similarly, for woody species, trait
divergence reduces niche overlap and relaxes competi-
tion, allowing even closely related species to coexist
(Beltran et al. 2012). These observations suggest that not
only the number of species per se, but their functional
diversity (i.e., phenotypic variation) is an important fac-
tor underlying the diversity-productivity theory (Loreau
2010).

Photosynthesis is an important physiological function
that determines the productivity and shade tolerance of a
species (Anten 2005; Poorter and Bongers 2006; Vallad-
ares and Niinemets 2008; Werger et al. 2002). Thus we
hypothesize that, if divergence of photosynthesis-related
traits among species and their differentiation along the
vertical gradient of light availability results in comple-
mentary resources use, it would lead to increased eco-
system productivity with increasing species diversity.
There are several empirical examples that suggest our
hypothesis may apply to forest ecosystems. When plan-
tation forests of the same planting density are compared,
productivity tends to be at least as high, or higher for
mixed than monoculture stands (Garber and Maguire
2004; Kelty et al. 1992; Piotto 2008). In some mixtures,
the increase in productivity was attributed to light-use
complementarity between species (Amoroso and
Turnblom 2006; Forrester et al. 2005). In natural, mixed
forests of Japan and New Zealand, where conifers and
broadleaved trees coexist, the basal area of conifers is
additive, meaning that stand biomass is higher in mixed
forests than in forests comprising only broadleaved trees
(Aiba et al. 2007; Midgley et al. 2002). In the mixed
conifer-broadleaved forest on Yakushima Island in
southern Japan, coexistence of conifers and broadleaved
trees is realized through stratification along the vertical
gradient of light availability (Inoue and Yoshida 2001;
Ishii et al. 2010). Increased productivity and additive
basal area of mixed forests may be the result of species
differences in above-ground traits (height growth pat-
tern, crown form, leaf morphology, shade tolerance, etc.)
that determine photosynthetic gain, as well as below-
ground traits (root growth, morphology, etc.) that
determine uptake of water and nutrients. Functional
differentiation among species may lead to competitive
relaxation in mixed stands, whereas competition may be
more intense in monocultures and less species-rich forests
(Ewel and Mazzarino 2008; Jones et al. 2005; Kelty
2006). A critical physiological function that underlies all
of the above characteristics is photosynthetic production
and allocation of photosynthate within individual trees
(Poorter et al. 2006; Selaya et al. 2007).

In addition to spatial differentiation along the vertical
gradient of light availability, temporal differentiation in
light-use among coexisting species may also be an
important factor that leads to complementary resource
use in forest ecosystems (Ishii and Asano 2010). In
vertically well-developed grasslands, seasonal variation
in light interception promotes species coexistence (Anten
and Hirose 1999). Similarly, in many forests, coexisting

tree species exhibit different leaf habits and phenologies,
such as variation in the timing of new leaf production
and leaf longevity, which reflects temporal differentia-
tion across seasons. Temporal differentiation in light-use
among species also occurs at longer time scales, such as
during succession in a tropical secondary forest (Selaya
et al. 2008). In many temperate forests of Japan, ever-
green and deciduous trees coexist, and the difference in
leaf habit and timing of leaf flushing may represent
temporal differentiation among species (see, e.g., Maeno
and Hiura 2000; Miyazawa and Kikuzawa 2005). At a
shorter time-scale, the diurnal pattern of photosynthesis
tends to vary among coexisting species. In a cool-tem-
perate forest in Hokkaido, northern Japan, the diurnal
patterns of change in leaf photosynthetic rates of Acer
mono Maxim. and Acer palmatum Thunb. are opposite
to those of Betula maximowicziana Regel and Ostrya
japonica Sarg. (Fig. 2). This may be related to their
stomatal response to diurnal changes in vapor pressure
deficit, i.e., the two Acer species are isohydric (tight
stomatal control of gas exchange), whereas Betula and
Ostrya (Betulaceae) are more anisohydric (loose sto-
matal control), suggesting that variation in photosyn-
thesis-related physiological traits among species results
in different diurnal patterns of photosynthesis and leads
to temporal differentiation in light-use among species.
Given that no single species can maintain maximum
photosynthetic rates throughout the day or year, stand-
level productivity would increase if coexisting species
diversified across time. We believe that our hypothesis:
variation among species in photosynthesis-related traits
leads to spatial/temporal differentiation and comple-
mentary resource use, would provide a functional
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Fig. 2 Variation among four coexisting species (Acer mono, Acer
palmatum, Betula maximowicziana, and Ostrya japonica) in the
diurnal pattern of photosynthesis in a cool-temperate deciduous
forest in Hokkaido, northern Japan. Measurements were made
under in situ photosynthetic photon flux density (PPFD) and
temperature and 370 lmol mol�1 CO2 concentration using the
canopy crane at Tomakomai Experimental Forest, Hokkaido on
clear days during summer (B. maximowicziana, Ishii et al. 2004;
remaining species, E. N., unpublished data)

193



explanation for the diversity–productivity theory as it
applies to forest ecosystems.

The importance of individual-level phenotypic plasticity
in trees

Greater functional diversity among coexisting plant
species may allow access to more of the total available
resources, leading to increased productivity (Cadotte
et al. 2009). For example, divergence of species across
the spectrum of leaf functions, such as photosynthesis,
longevity, herbivore defense, etc. (Onoda et al. 2011;
Poorter and Bongers 2006; Wright et al. 2004), may
promote species coexistence (Diaz and Cabido 2001;
Kraft et al. 2008; Selaya and Anten 2010). Most studies
comparing functional traits among coexisting species
assign a mean trait to each species, when in reality there
is a broad range of phenotypic plasticity both within and
across individuals, especially for tall trees, and this range
is highly variable among species. Because phenotypic
plasticity is expressed at the metamer level in plants
(DeKroon et al. 2005), such studies fail to address the
importance of phenotypic plasticity and its contribution
to species coexistence and ecosystem function.

Trees experience highly variable environmental con-
ditions as they grow from seedlings to mature trees
during their long life-span. Trees also modify their own
environment as they increase nearly 1,000 times in size
through ontogeny (Ford 1992; Thomas and Winner
2002). In trees, physiological acclimation occurs at the
metamer level in response to the spatial/temporal varia-
tion in environmental conditions. Thus, it would be
advantageous to retain high physiological plasticity over
the course of their evolution (Schlichting 1986). This is
readily visible if one observes the high variability of leaf
morphology from the lower to upper crown of a single
tree by accessing firsthand the canopy of tall forests.
Although they are genetically identical, leaves near the
tree top look very different from those at the bottom. In
general, leaf orientation becomes more plagiotropic, the
number of leaves attached to twigs decreases, and each
leaf becomes flatter in cross-section, with fewer palisade
cells toward the bottom of the canopy (Fig. 3a, Cavaleri
et al. 2010; Ishii et al. 2007; Niinemets 2007; Oldham
et al. 2010). A marked example is the vertical variation in
leaf morphology of S. sempervirens, the world’s tallest
tree species. (Ishii et al. 2008; Koch et al. 2004; Mullin
et al. 2009; Oldham et al. 2010). In S. sempervirens, leaf
mass per area (LMA) can change as much as 2.5-fold
within the crown of a single tree (Fig. 3b). The ability to
produce highly shade-acclimated leaves with low LMA
seems to be correlated with stand-level leaf area index.
Among 12 conifer species in the western US, maximum
LAI is higher for species that produce more shade-
acclimated leaves (Leverenz and Hinckley 1990). This is
because such species can develop deep crowns with leaves
from the upper canopy down to deep shade. Among
the 12 species, S. sempervirens exhibits the greatest

morphological plasticity and highest stand-level LAI.
This suggests that species with greater plasticity in pho-
tosynthesis-related traits are able to exploit the vertical
gradient in light availability, which may explain why S.
sempervirens forests have such enormous biomass. When
plasticity-induced exploitation of light occurs across
species rather than within species, it would increase both
diversity and productivity of forest communities.

While, the breadth of physiological plasticity allows
species to diverge along the vertical gradient of light
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Fig. 3 Because phenotypic plasticity is expressed at the metamer
level in plants, physiological acclimation to the vertical gradient
occurs at the shoot and leaf levels within the crown of individual
trees. In Picea jezoensis, the number of leaves attached to the shoot
axis, leaf thickness and number of palisade cells decrease from the
upper to lower crown (a). The line represents 1 cm and 1 mm in the
left and right panels, respectively (after Ishii et al. 2007). In Sequoia
sempervirens, the world’s tallest tree species, leaf mass per area
changes 2.5-fold from tree top to crown base (b). Symbols denote
different trees that were climbed and sampled using ropes in
Jedediah Smith Redwoods State Park, CA. Each data point
represents a foliated shoot (1-year-old), of which three to five
replicate samples were measured at each height (W. Azuma,
unpublished data)
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availability within the canopy, convergence of physio-
logical traits may allow their coexistence in the light-
limited understory. For example, saplings of Abies
amabilis (Dougl. ex Loud.) Dougl. ex J. Forbes and
Tsuga heterophylla (Raf.) Sarg. often occur adjacent to
each other in the understory of cool-temperate conifer
forests of the pacific northwest coast of North America
(Fig. 4). Although leaf mass per area is greater and leaf
longevity longer for A. amabilis than for T. heterophylla,
the two species exhibit convergence in morphological
and physiological traits associated with efficient light
interception in the light-limited understory (Ishii et al.
2009). In the understory of a lowland tropical rainforest
in Panama, 24 species of contrasting crown architectures
exhibited convergence of traits associated with light-
interception efficiency (Valldares et al. 2002). Functional
convergence also occurs in response to hydraulic limi-
tation in the upper canopy. Height-related changes in
morphological and physiological traits, converge among
13 coexisting deciduous broad-leaved tree species
(Miyata et al. 2011), as well as among three Acer species
(Nabeshima and Hiura 2008) in Hokkaido, northern
Japan. In forest ecosystems, resource availability is
highly spatially and temporally heterogeneous. Thus,
plasticity of photosynthesis-related traits may enable
coexistence of tree species through divergence in
resource-rich environments, as well as through conver-
gence in resource-limited environments (Kraft et al.
2008; Lebrija-Trejos et al. 2010).

Conclusions

Because humans are confined mostly to the ground, we
have been able to observe only what is happening at the

foot of tall forests. We contend that a three-dimensional,
canopy perspective is needed in order to fully under-
stand forest ecosystem functioning. The canopy per-
spective adds depth (literally) to our understanding of
forest ecosystems. In the early days of forest canopy
ecology, it was exciting just to describe this new eco-
system, which had been largely unexplored. How diverse

Fig. 4 Tree species may coexist through functional convergence in
resource-limited environments, such as the shaded understory of
mature forests. Branches of Abies amabilis (left) and Tsuga
heterophylla (right) growing adjacent to each other in the
understory of a mature temperate forest in southern Washington
State, exhibit similar shoot/leaf morphologies and light-intercep-
tion efficiencies (photo: H. Ishii)

Fig. 5 Using newly developed, safe, and reliable canopy access
techniques, we can make the same measurements in the canopy as
we do on the ground. a Measuring the trunk diameter of a
Cryptomeria japonica tree at 15 m above ground in Yakushima
Island, Japan (Photo: H. I.). b Micrometeorological sensors
installed atop a 111-m Sequoia sempervirens tree in California
(Photo: S.C. Sillett)
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are the canopy flora and fauna? What are their eco-
logical roles? Dr. Tamiji Inoue, a pioneer of forest
canopy ecology in Japan once said that we should
appreciate the pure value of the diversity of organisms
in the forest canopy and the intricate symbiotic rela-
tionships among them. With the development of safe
and reliable canopy access techniques, canopy ecology
has matured to a more process-based science (Lowman
and Rinker 2004). Now, we can make the same mea-
surements and address the same questions as we do on
the ground. For example, we can measure the trunk
diameter and sample increment cores from breast height
to tree top, tag and measure every epiphytic plant,
measure photosynthesis and transpiration rates of
leaves in situ, and install micrometeorological stations
in tall trees (Fig. 5). Using these enhanced techniques,
we can provide functional explanations to the larger
scale questions that could not be answered from mea-
surements on the ground.

Experiments conducted in grasslands have provided
much insight regarding diversity–function relationships
in plant communities. We must use caution, however,
when applying theories derived from low-statured eco-
systems to forest ecosystems (Scherer-Lorenzen et al.,
2005). As we have illustrated, elucidation of the under-
lying physiological mechanisms may provide a func-
tional explanation for the diversity–productivity theory
as it applies to forest ecosystems. Among these, we be-
lieve that individual-level phenotypic plasticity of pho-
tosynthesis-related traits is especially important because
the breadth of physiological plasticity is what allows tree
species to coexist along the vertical gradient of light
availability within the forest canopy, as well as in the
light-limited understory. In contrast to the view from the
ground, a canopy perspective reveals the breadth of
phenotypic plasticity of each species contributing to
their coexistence and various ecosystem functions. It
may also reveal new relationships between functional
diversity and ecosystem functioning previously undis-
covered in grassland experiments, where the vertical
variation in the light environment and leaf functions is
much less than in forest ecosystems. A cross-biome
exploration of the link between plasticity of photosyn-
thesis-related traits and stand productivity may provide
a functional explanation for the relationship between
species assemblages and productivity of forest ecosys-
tems.
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