77 research outputs found

    Els noms en català dels nous elements químics

    Get PDF
    El mes de novembre de 2016, la IUPAC publicava els noms anglesos oficials dels darrers quatre elements incorporats a la taula periòdica: nihonium, moscovium, tennessine i oganesson. Gairebé simultàniament, el Consell Supervisor del TERMCAT va iniciar l'estudi d'aquests neologismes per a establir-ne la denominació adequada en català. Aquest article presenta les denominacions normalitzades en català, amb els principals arguments terminològics en què es fonamenten: nihoni, moscovi, tennessi i oganessó. S'hi inclou una referència a les propostes denominatives en català que, un cop considerades, es van desestimar.Last November, the IUPAC published the official names of the four latest elements to be added to the periodic table: nihonium, moscovium, tennessine and oganesson. Almost at the same time, the TERMCAT Supervisory Council started the study of these neologisms to set their appropriate names in Catalan. This article introduces the standardized Catalan denominations with the main terminological arguments that support them: nihoni, moscovi, tennessi and oganessó. Alternative Catalan names that were rejected after consideration are also included

    Pyrethroid bioaccumulation in Mediterranen dolphins

    Get PDF
    Pyrethroids are organic pollutants with high hydrophobicity used as insecticides. Concern exists about aquatic organisms¿ exposure to their toxicity. They were believed to be converted to non-toxic metabolites in mammals, but our group has detected them in human breast milk and has proved their bioaccumulation in marine mammals and river fish. The present study investigates the occurrence of pyrethroid compounds in liver samples from striped dolphins (Stenella coeruleoalba)and common dolphins (Delphinus delphis) from southern Spain, as the first attempt to determine the occurrence and bioaccumulation and distribution of pyrethroids in marine mammal tissues from the Mediterranean Sea. Samples of dolphin tissue were collected from the Abloran Sea (south of Spain) between 2003 and 2010, including 37 liver samples from striped dolphin and different tissues¿blubber, muscle, liver, brain and kidneys¿from 11 common dolphins. The analytical method monitored 10 pyrethroids, including cypermethrin and detamethrin. For the sample preparation?lyophilized sample was spiked with internal standards, extracted by sonication and underwent a clean-up with alumina and C18 SPE cartridges. Extracts were analysed by GC-NCI-MS/MS. Method recoveries for the pyrethroids ranged 53-116?% and method LODs and LOQs were 0.02-0.46?ng/g and 0.08-1.54?ng/g, respectively. Pyrethroids were detected in 87?% of the striped dolphins and 100?% of the common dolphins, with total concentrations of nd-5,210?ng/g?lw and 69-2,036?ng/g?lw, respectively. These levels were higher than those reported found in dolphins from Brazil (7.0-68?ng/g?lw). Permethrin and tetramethrin were the main contributors to the pyrethroid profiles for all tissues. The samples of striped dolphins where used to observe that bioaccumulation of pyrethroids was unlike that of persistent organic pollutants (POPs), as pyrethroid levels were not correlated to the age of the specimens. Levels slightly increase from calves to juveniles, whereas juveniles present similar levels to adults. Metabolization of pyrethroids after achieving sexual maturity might account for this pattern. Because of the pyrethroids lipophilic behaviour, blubber was the most contaminated tissue and brain showed the lowest levels. Normalizing the data to the lipid content, the highest value was for muscle by far, suggesting a preference for that tissue. SETA

    Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome

    Full text link
    [EN] Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70-80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.This research was supported by University of Valencia 'Ayuda a la Investigacion', Asociacion Pablo Ugarte and European Regional Development Fund (VLC-CAMPUS).Sendra, L.; Miguel, A.; Navarro-Plaza, MC.; Herrero, MJ.; De La Higuera, J.; Cháfer-Pericás, C.; Aznar, E.... (2020). Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. Nanomaterials. 10(6):1-16. https://doi.org/10.3390/nano10061183S116106Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., & Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655. doi:10.1016/j.actbio.2011.06.018Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 21(23), 10644-10654. doi:10.1021/la0513712Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, (17), 1978. doi:10.1039/b406189fSandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W., & Rotello, V. M. (2001). Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Bioconjugate Chemistry, 13(1), 3-6. doi:10.1021/bc015545cThomas, M., & Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100(16), 9138-9143. doi:10.1073/pnas.1233634100Noh, S. M., Kim, W.-K., Kim, S. J., Kim, J. M., Baek, K.-H., & Oh, Y.-K. (2007). Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(5), 747-752. doi:10.1016/j.bbagen.2007.01.012Chan, T. G., Morse, S. V., Copping, M. J., Choi, J. J., & Vilar, R. (2018). Targeted Delivery of DNA-Au Nanoparticles across the Blood-Brain Barrier Using Focused Ultrasound. ChemMedChem, 13(13), 1311-1314. doi:10.1002/cmdc.201800262Mbatha, L. S., & Singh, M. (2019). Starburst Poly(amidoamine) Dendrimer Grafted Gold Nanoparticles as a Scaffold for Folic Acid-Targeted Plasmid DNA Delivery In Vitro. Journal of Nanoscience and Nanotechnology, 19(4), 1959-1970. doi:10.1166/jnn.2019.15798Cobley, C. M., Chen, J., Cho, E. C., Wang, L. V., & Xia, Y. (2011). Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev., 40(1), 44-56. doi:10.1039/b821763gCho, E. C., Au, L., Zhang, Q., & Xia, Y. (2010). The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells. Small, 6(4), 517-522. doi:10.1002/smll.200901622Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1), 65-71. doi:10.1016/j.jconrel.2009.12.006Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science, 312(5776), 1027-1030. doi:10.1126/science.1125559Ghosh, P. S., Kim, C.-K., Han, G., Forbes, N. S., & Rotello, V. M. (2008). Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2(11), 2213-2218. doi:10.1021/nn800507tMassich, M. D., Giljohann, D. A., Seferos, D. S., Ludlow, L. E., Horvath, C. M., & Mirkin, C. A. (2009). Regulating Immune Response Using Polyvalent Nucleic Acid−Gold Nanoparticle Conjugates. Molecular Pharmaceutics, 6(6), 1934-1940. doi:10.1021/mp900172mRyou, S.-M., Kim, S., Jang, H. H., Kim, J.-H., Yeom, J.-H., Eom, M. S., … Lee, K. (2010). Delivery of shRNA using gold nanoparticle–DNA oligonucleotide conjugates as a universal carrier. Biochemical and Biophysical Research Communications, 398(3), 542-546. doi:10.1016/j.bbrc.2010.06.115Stobiecka, M., & Hepel, M. (2011). Double-shell gold nanoparticle-based DNA-carriers with poly-l-lysine binding surface. Biomaterials, 32(12), 3312-3321. doi:10.1016/j.biomaterials.2010.12.064Sharma, A., Tandon, A., Tovey, J. C. K., Gupta, R., Robertson, J. D., Fortune, J. A., … Mohan, R. R. (2011). Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine, 7(4), 505-513. doi:10.1016/j.nano.2011.01.006Yan, X., Blacklock, J., Li, J., & Möhwald, H. (2011). One-Pot Synthesis of Polypeptide–Gold Nanoconjugates for in Vitro Gene Transfection. ACS Nano, 6(1), 111-117. doi:10.1021/nn202939sShan, Y., Luo, T., Peng, C., Sheng, R., Cao, A., Cao, X., … Shi, X. (2012). Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials, 33(10), 3025-3035. doi:10.1016/j.biomaterials.2011.12.045Trigueros, Domènech, Toulis, & Marfany. (2019). In Vitro Gene Delivery in Retinal Pigment Epithelium Cells by Plasmid DNA-Wrapped Gold Nanoparticles. Genes, 10(4), 289. doi:10.3390/genes10040289Munsell, E. V., Fang, B., & Sullivan, M. O. (2018). Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjugate Chemistry, 29(11), 3691-3704. doi:10.1021/acs.bioconjchem.8b00611Dhanya, G. R., Caroline, D. S., Rekha, M. R., & Sreenivasan, K. (2018). Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. International Journal of Biological Macromolecules, 120, 999-1008. doi:10.1016/j.ijbiomac.2018.08.142Hersey, P., & Gallagher, S. (2013). Intralesional immunotherapy for melanoma. Journal of Surgical Oncology, 109(4), 320-326. doi:10.1002/jso.23494Mastrangelo, M. J., Maguire, H. C., Eisenlohr, L. C., Laughlin, C. E., Monken, C. E., McCue, P. A., … Lattime, E. C. (1999). Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Therapy, 6(5), 409-422. doi:10.1038/sj.cgt.7700066Senzer, N. N., Kaufman, H. L., Amatruda, T., Nemunaitis, M., Reid, T., Daniels, G., … Nemunaitis, J. J. (2009). Phase II Clinical Trial of a Granulocyte-Macrophage Colony-Stimulating Factor–Encoding, Second-Generation Oncolytic Herpesvirus in Patients With Unresectable Metastatic Melanoma. Journal of Clinical Oncology, 27(34), 5763-5771. doi:10.1200/jco.2009.24.3675Goins, W. F., Huang, S., Cohen, J. B., & Glorioso, J. C. (2014). Engineering HSV-1 Vectors for Gene Therapy. Herpes Simplex Virus, 63-79. doi:10.1007/978-1-4939-0428-0_5Dummer, R., Rochlitz, C., Velu, T., Acres, B., Limacher, J.-M., Bleuzen, P., … Urosevic, M. (2008). Intralesional Adenovirus-mediated Interleukin-2 Gene Transfer for Advanced Solid Cancers and Melanoma. Molecular Therapy, 16(5), 985-994. doi:10.1038/mt.2008.32GUPTA, P., SU, Z., LEBEDEVA, I., SARKAR, D., SAUANE, M., EMDAD, L., … DENT, P. (2006). mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology & Therapeutics, 111(3), 596-628. doi:10.1016/j.pharmthera.2005.11.005Abbink, P., Lemckert, A. A. C., Ewald, B. A., Lynch, D. M., Denholtz, M., Smits, S., … Barouch, D. H. (2007). Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D. Journal of Virology, 81(9), 4654-4663. doi:10.1128/jvi.02696-06Mast, T. C., Kierstead, L., Gupta, S. B., Nikas, A. A., Kallas, E. G., Novitsky, V., … Shiver, J. W. (2010). International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine, 28(4), 950-957. doi:10.1016/j.vaccine.2009.10.145Barouch, D. H., Kik, S. V., Weverling, G. J., Dilan, R., King, S. L., Maxfield, L. F., … Goudsmit, J. (2011). International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine, 29(32), 5203-5209. doi:10.1016/j.vaccine.2011.05.025Na, Y., Nam, J.-P., Hong, J., Oh, E., Shin, H. C., Kim, H. S., … Yun, C.-O. (2019). Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. Journal of Controlled Release, 305, 75-88. doi:10.1016/j.jconrel.2019.04.040Kasala, D., Yoon, A.-R., Hong, J., Kim, S. W., & Yun, C.-O. (2016). Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine, 11(13), 1689-1713. doi:10.2217/nnm-2016-0060Kwon, O.-J., Kang, E., Kim, S., & Yun, C.-O. (2011). Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. Journal of Controlled Release, 155(2), 317-325. doi:10.1016/j.jconrel.2011.06.014YOSHIHARA, C., HAMADA, K., KURODA, M., & KOYAMA, Y. (2011). Oncolytic plasmid: A novel strategy for tumor immuno-gene therapy. Oncology Letters, 3(2), 387-390. doi:10.3892/ol.2011.467Rojas, J. J., Guedan, S., Searle, P. F., Martinez-Quintanilla, J., Gil-Hoyos, R., Alcayaga-Miranda, F., … Alemany, R. (2010). Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Molecular Therapy, 18(11), 1960-1971. doi:10.1038/mt.2010.173Rincón, E., Cejalvo, T., Kanojia, D., Alfranca, A., Rodríguez-Milla, M. Á., Hoyos, R. A. G., … García-Castro, J. (2017). Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 8(28), 45415-45431. doi:10.18632/oncotarget.17557Carette, J. E., Graat, H. C. A., Schagen, F. H. E., Abou El Hassan, M. A. I., Gerritsen, W. R., & van Beusechem, V. W. (2005). Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. The Journal of Gene Medicine, 7(8), 1053-1062. doi:10.1002/jgm.754Stanton, R. J., McSharry, B. P., Armstrong, M., Tomasec, P., & Wilkinson, G. W. G. (2008). Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. BioTechniques, 45(6), 659-668. doi:10.2144/000112993Bayo-Puxan, N., Cascallo, M., Gros, A., Huch, M., Fillat, C., & Alemany, R. (2006). Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. Journal of General Virology, 87(9), 2487-2495. doi:10.1099/vir.0.81889-0Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications, (16), 1655. doi:10.1039/c39950001655Guillem, V. M., Tormo, M., Revert, F., Benet, I., García-Conde, J., Crespo, A., & Aliño, S. F. (2002). Polyethyleneimine-based immunopolyplex for targeted gene transfer in human lymphoma celllines. The Journal of Gene Medicine, 4(2), 170-182. doi:10.1002/jgm.228Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L., & Suschitzky, H. (1975). A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochemical Journal, 151(2), 417-432. doi:10.1042/bj1510417Moret, I., Esteban Peris, J., Guillem, V. M., Benet, M., Revert, F., Dası́, F., … Aliño, S. F. (2001). Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release, 76(1-2), 169-181. doi:10.1016/s0168-3659(01)00415-1Lisitsyna, E. S., Lygo, O. N., Durandin, N. A., Dement’eva, O. V., Rudoi, V. M., & Kuzmin, V. A. (2012). Superquenching of SYBRGreen dye fluorescence in complex with DNA by gold nanoparticles. High Energy Chemistry, 46(6), 363-367. doi:10.1134/s0018143912060057Venkiteswaran, S., Thomas, T., & Thomas, T. J. (2016). Selectivity of polyethyleneimines on DNA nanoparticle preparation and gene transport. ChemistrySelect, 1(6), 1144-1150. doi:10.1002/slct.201600026Taranejoo, S., Liu, J., Verma, P., & Hourigan, K. (2015). A review of the developments of characteristics of PEI derivatives for gene delivery applications. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42096Del Papa, J., & Parks, R. (2017). Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses, 9(1), 13. doi:10.3390/v9010013Kazemi Oskuee, R., Dabbaghi, M., Gholami, L., Taheri-Bojd, S., Balali-Mood, M., Mousavi, S. H., & Malaekeh-Nikouei, B. (2018). Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sciences, 197, 101-108. doi:10.1016/j.lfs.2018.02.008Thomas, T. J., Tajmir-Riahi, H.-A., & Pillai, C. K. S. (2019). Biodegradable Polymers for Gene Delivery. Molecules, 24(20), 3744. doi:10.3390/molecules24203744Miciak, J. J., Hirshberg, J., & Bunz, F. (2018). Seamless assembly of recombinant adenoviral genomes from high-copy plasmids. PLOS ONE, 13(6), e0199563. doi:10.1371/journal.pone.019956

    Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome

    Get PDF
    Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70-80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer

    Occurrence of halogenated flame retardants in commercial seafood species available in European markets

    Get PDF
    PBDEs (congeners 28, 47, 99, 100, 153, 154, 183, 209), HBCD (α, β, γ), emerging brominated flame retardants (PBEB, HBB and DBDPE), dechloranes (Dec 602, 603, 604, syn- and anti-DP), TBBPA, 2,4,6-TBP and MeO-PBDEs (8 congeners) were analysed in commercial seafood samples from European countries. Levels were similar to literature and above the environmental quality standards (EQS) limit of the Directive 2013/39/EU for PBDEs. Contaminants were found in 90.5% of the seafood samples at n. d.-356 ng/g lw (n. d.-41.1 ng/g ww). DBDPE was not detected and 2,4,6-TBP was detected only in mussels, but at levels comparable to those of PBDEs. Mussel and seabream were the most contaminated species and the Mediterranean Sea (FAO Fishing Area 37) was the most contaminated location. The risk assessment revealed that there was no health risk related to the exposure to brominated flame retardants via seafood consumption. However, a refined risk assessment for BDE-99 is of interest in the future. Moreover, the cooking process concentrated PBDEs and HB
    corecore