11 research outputs found

    Neurological manifestations of COVID-19 in adults and children

    Get PDF
    Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P < 0.001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age

    Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity

    No full text
    Background The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries.Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria.Results A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)).Conclusion Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities

    Thrombotic and hemorrhagic complications of COVID-19 in adults hospitalized in high-income countries compared with those in adults hospitalized in low- and middle-income countries in an international registry

    No full text
    International audienc

    Liver injury in hospitalized patients with COVID-19: An International observational cohort study

    No full text
    Background: Using a large dataset, we evaluated prevalence and severity of alterations in liver enzymes in COVID-19 and association with patient-centred outcomes.MethodsWe included hospitalized patients with confirmed or suspected SARS-CoV-2 infection from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) database. Key exposure was baseline liver enzymes (AST, ALT, bilirubin). Patients were assigned Liver Injury Classification score based on 3 components of enzymes at admission: Normal; Stage I) Liver injury: any component between 1-3x upper limit of normal (ULN); Stage II) Severe liver injury: any component & GE;3x ULN. Outcomes were hospital mortality, utilization of selected resources, complications, and durations of hospital and ICU stay. Analyses used logistic regression with associations expressed as adjusted odds ratios (OR) with 95% confidence intervals (CI).ResultsOf 17,531 included patients, 46.2% (8099) and 8.2% (1430) of patients had stage 1 and 2 liver injury respectively. Compared to normal, stages 1 and 2 were associated with higher odds of mortality (OR 1.53 [1.37-1.71]; OR 2.50 [2.10-2.96]), ICU admission (OR 1.63 [1.48-1.79]; OR 1.90 [1.62-2.23]), and invasive mechanical ventilation (OR 1.43 [1.27-1.70]; OR 1.95 (1.55-2.45). Stages 1 and 2 were also associated with higher odds of developing sepsis (OR 1.38 [1.27-1.50]; OR 1.46 [1.25-1.70]), acute kidney injury (OR 1.13 [1.00-1.27]; OR 1.59 [1.32-1.91]), and acute respiratory distress syndrome (OR 1.38 [1.22-1.55]; OR 1.80 [1.49-2.17]).ConclusionsLiver enzyme abnormalities are common among COVID-19 patients and associated with worse outcomes

    At-admission prediction of mortality and pulmonary embolism in an international cohort of hospitalised patients with COVID-19 using statistical and machine learning methods

    No full text
    By September 2022, more than 600 million cases of SARS-CoV-2 infection have been reported globally, resulting in over 6.5 million deaths. COVID-19 mortality risk estimators are often, however, developed with small unrepresentative samples and with methodological limitations. It is highly important to develop predictive tools for pulmonary embolism (PE) in COVID-19 patients as one of the most severe preventable complications of COVID-19. Early recognition can help provide life-saving targeted anti-coagulation therapy right at admission. Using a dataset of more than 800,000 COVID-19 patients from an international cohort, we propose a cost-sensitive gradient-boosted machine learning model that predicts occurrence of PE and death at admission. Logistic regression, Cox proportional hazards models, and Shapley values were used to identify key predictors for PE and death. Our prediction model had a test AUROC of 75.9% and 74.2%, and sensitivities of 67.5% and 72.7% for PE and all-cause mortality respectively on a highly diverse and held-out test set. The PE prediction model was also evaluated on patients in UK and Spain separately with test results of 74.5% AUROC, 63.5% sensitivity and 78.9% AUROC, 95.7% sensitivity. Age, sex, region of admission, comorbidities (chronic cardiac and pulmonary disease, dementia, diabetes, hypertension, cancer, obesity, smoking), and symptoms (any, confusion, chest pain, fatigue, headache, fever, muscle or joint pain, shortness of breath) were the most important clinical predictors at admission. Age, overall presence of symptoms, shortness of breath, and hypertension were found to be key predictors for PE using our extreme gradient boosted model. This analysis based on the, until now, largest global dataset for this set of problems can inform hospital prioritisation policy and guide long term clinical research and decision-making for COVID-19 patients globally. Our machine learning model developed from an international cohort can serve to better regulate hospital risk prioritisation of at-risk patients

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    No full text
    AbstractBackgroundWe describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients.MethodsThe data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV).ResultsData were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%.ConclusionsAge was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death.</jats:sec

    ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

    Get PDF
    The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    Full text link
    corecore