14,754 research outputs found

    Quantum Monte Carlo simulation of overpressurized liquid 4He

    Full text link
    A diffusion Monte Carlo simulation of superfluid 4^4He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing (∌\sim 25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.Comment: 5 pages, accepted for publication in Phys. Rev. Let

    Progress in Monte Carlo calculations of Fermi systems: normal liquid 3He

    Full text link
    The application of the diffusion Monte Carlo method to a strongly interacting Fermi system as normal liquid 3^3He is explored. We show that the fixed-node method together with the released-node technique and a systematic method to analytically improve the nodal surface constitute an efficient strategy to improve the calculation up to a desired accuracy. This methodology shows unambiguously that backflow correlations, when properly optimized, are enough to generate an equation of state of liquid 3^3He in excellent agreement with experimental data from equilibrium up to freezing.Comment: 14 pages, 3 eps figure

    Management of acute liver failure in intensive care

    Get PDF

    High-quality variational wave functions for small 4He clusters

    Get PDF
    We report a variational calculation of ground state energies and radii for 4He_N droplets (3 \leq N \leq 40), using the atom-atom interaction HFD-B(HE). The trial wave function has a simple structure, combining two- and three-body correlation functions coming from a translationally invariant configuration-interaction description, and Jastrow-type short-range correlations. The calculated ground state energies differ by around 2% from the diffusion Monte Carlo results.Comment: 5 pages, 1 ps figure, REVTeX, submitted to Phys. Rev.

    Atomic kinetic energy, momentum distribution and structure of solid neon at zero-temperature

    Full text link
    We report on the calculation of the ground-state atomic kinetic energy, EkE_{k}, and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann's ratio and atomic density profile around the positions of the perfect crystalline lattice. Our value for EkE_{k} at the equilibrium density is 41.51(6)41.51(6) K, which agrees perfectly with the recent prediction made by Timms {\it et al.}, 41(2)41(2) K, based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4−204 - 20 K, and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid 4^4He in terms of the Debye model, in order to size the relevance of anharmonic effects in Ne.Comment: 20 pages, 7 figures. To be published in Physical Review

    Random forest algorithm for algorithm for prediction of high school science students acceptance snmptn based on students assesment report

    Get PDF
    National Selection for State University (SNMPTN) is one of the selectionlines for admission of new students in Indonesia to enter State Universities byinvitation. Report card grades are one component of the assessment ofadmission of new students to enter state universities on this pathway. Thedifference in standards between universities in determining the admission ofSNMPTN applicants, causing the need to predict based on several relatedfactors. This research uses data mining techniques with Random forestalgorithm. From the results of research that has been done, it was found thatthe Random Forest algorithm can be used to predict students who are acceptedat SNMPTN based on report card grades, obtained from the results of theclassification process with the student report card report survey datasetreceived by SNMPTN, This is indicated by the accuracy, precision, and recallvalues of 93%. Optimization of the random forest algorithm using theoversampling technique with the SMOTE method can improve the classifier'sperformance due to the imbalanced class problem

    Extraction conditions of polyphenol oxidase from banana peel

    Get PDF
    Polyphenol oxidase (PPO) is an enzyme containing copper, presents in various fruits and vegetables. It is responsible for the browning reactions when the cells are damaged during handling. The best conditions for extraction of polyphenol oxidase from banana peel was by using an extraction buffer containing phosphate buffer (0.05 M, pH 7), 0.01 M ascorbic acid and 0.5% polyethylene glycol, with extraction ratio 1:4 (w:v) for one minute by using blender. The enzyme activity was measured spectrophotometrically at 425 nm. PPO was studied to prevent the browning of banana peel which results in the loss of their marketability. The aim of this study was to determine the optimum conditions for polyphenol oxidase extraction from banana peel

    Monte Carlo Calculations for Liquid 4^4He at Negative Pressure

    Get PDF
    A Quadratic Diffusion Monte Carlo method has been used to obtain the equation of state of liquid 4^4He including the negative pressure region down to the spinodal point. The atomic interaction used is a renewed version (HFD-B(HE)) of the Aziz potential, which reproduces quite accurately the features of the experimental equation of state. The spinodal pressure has been calculated and the behavior of the sound velociy around the spinodal density has been analyzed.Comment: 10 pages, RevTex 3.0, with 4 PostScript figures include

    Scattering length for helium atom-diatom collision

    Full text link
    We present results on the scattering lengths of ^4He--^4He_2 and ^3He--^4He_2 collisions. We also study the consequence of varying the coupling constant of the atom-atom interaction.Comment: Contribution to Proceedings of the International Workshop ``Critical Stability of Few-Body Quantum Systems'' (Dresden, October 17--22, 2005

    Ferromagnetic Ga₁ˍₓ Mnₓ As produced by ion implantation and pulsed-laser melting

    Get PDF
    We demonstrate the formation of ferromagneticGa₁ˍₓMnₓAsfilms by Mn ion implantation into GaAs followed by pulsed-laser melting. Irradiation with a single excimer laser pulse results in the epitaxial regrowth of the implanted layer with Mn substitutional fraction up to 80% and effective Curie temperature up to 29 K for samples with a maximum Mn concentration of x≈0.03. A remanent magnetization persisting above 85 K has been observed for samples with x≈0.10, in which 40% of the Mn resides on substitutional lattice sites. We find that the ferromagnetism in Ga₁ˍₓMnₓAs is rather robust to the presence of structural defects.The work at the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The work at Harvard was supported by NASA Grant No. NAG8-1680. One of the authors ~M.A.S.! acknowledges support from an NSF Graduate Research Fellowship
    • 

    corecore