205 research outputs found

    Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield

    Get PDF
    We studied rodingite and rodingite-like rocks within a serpentinized ultramafic sequence and ophiolitic mélange at Um Rashid, in the Eastern Desert of Egypt. The Um Rashid ophiolite is strongly deformed, metamorphosed, and altered by serpentinization, carbonatization, listvenitization, rodingitization and silicification. The textures, whole-rock chemistry, and composition of fresh primary mineral relics show that the serpentinite protoliths were strongly melt-depleted harzburgite and minor dunite, typical of a supra-subduction zone fore-arc setting. The light-colored rocks replacing gabbro are divided on the basis of field relations, mineral assemblages and geochemical characteristics into typical rodingite and rodingite-like rock. Typical rodingite, found as blocks with chloritite blackwall rims within ophiolitic mélange, contains garnet, vesuvianite, diopside and chlorite with minor prehnite and opaque minerals. Rodingite-like rock, found as dykes in serpentinite, consists of hercynite, preiswerkite, margarite, corundum, prehnite, ferropargasite, albite, andesine, clinozoisite and diaspore. Some rodingite-like rock samples preserve relict gabbroic minerals and texture, whereas typical rodingite is fully replaced. Rodingite is highly enriched in CaO, Fe₂O₃, MgO, and compatible trace elements, whereas rodingite-like rock is strongly enriched in Al₂O₃ and incompatible trace elements. Based on geochemistry and petrographic evidence, both types of rodingitic rocks likely developed from mafic protoliths in immediate proximity to serpentinite but were affected by interaction with different fluids, most likely at different times. Typical rodingite development likely accompanied serpentinization and shows mineral assemblages characteristic of low-Si, high-Ca fluid infiltration at about 300 °C. Rodingite-like rock, on the other hand, likely developed from seawater infiltration

    Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield

    Get PDF
    We studied rodingite and rodingite-like rocks within a serpentinized ultramafic sequence and ophiolitic mélange at Um Rashid, in the Eastern Desert of Egypt. The Um Rashid ophiolite is strongly deformed, metamorphosed, and altered by serpentinization, carbonatization, listvenitization, rodingitization and silicification. The textures, whole-rock chemistry, and composition of fresh primary mineral relics show that the serpentinite protoliths were strongly melt-depleted harzburgite and minor dunite, typical of a supra-subduction zone fore-arc setting. The light-colored rocks replacing gabbro are divided on the basis of field relations, mineral assemblages and geochemical characteristics into typical rodingite and rodingite-like rock. Typical rodingite, found as blocks with chloritite blackwall rims within ophiolitic mélange, contains garnet, vesuvianite, diopside and chlorite with minor prehnite and opaque minerals. Rodingite-like rock, found as dykes in serpentinite, consists of hercynite, preiswerkite, margarite, corundum, prehnite, ferropargasite, albite, andesine, clinozoisite and diaspore. Some rodingite-like rock samples preserve relict gabbroic minerals and texture, whereas typical rodingite is fully replaced. Rodingite is highly enriched in CaO, Fe₂O₃, MgO, and compatible trace elements, whereas rodingite-like rock is strongly enriched in Al₂O₃ and incompatible trace elements. Based on geochemistry and petrographic evidence, both types of rodingitic rocks likely developed from mafic protoliths in immediate proximity to serpentinite but were affected by interaction with different fluids, most likely at different times. Typical rodingite development likely accompanied serpentinization and shows mineral assemblages characteristic of low-Si, high-Ca fluid infiltration at about 300 °C. Rodingite-like rock, on the other hand, likely developed from seawater infiltration

    Is Content Really King? An Objective Analysis of the Public's Response to Medical Videos on YouTube

    Get PDF
    Medical educators and patients are turning to YouTube to teach and learn about medical conditions. These videos are from authors whose credibility cannot be verified & are not peer reviewed. As a result, studies that have analyzed the educational content of YouTube have reported dismal results. These studies have been unable to exclude videos created by questionable sources and for non-educational purposes. We hypothesize that medical education YouTube videos, authored by credible sources, are of high educational value and appropriately suited to educate the public. Credible videos about cardiovascular diseases were identified using the Mayo Clinic's Center for Social Media Health network. Content in each video was assessed by the presence/absence of 7 factors. Each video was also evaluated for understandability using the Suitability Assessment of Materials (SAM). User engagement measurements were obtained for each video. A total of 607 videos (35 hours) were analyzed. Half of all videos contained 3 educational factors: treatment, screening, or prevention. There was no difference between the number of educational factors present & any user engagement measurement (p NS). SAM scores were higher in videos whose content discussed more educational factors (p<0.0001). However, none of the user engagement measurements correlated with higher SAM scores. Videos with greater educational content are more suitable for patient education but unable to engage users more than lower quality videos. It is unclear if the notion “content is king� applies to medical videos authored by credible organizations for the purposes of patient education on YouTube

    A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2) using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Get PDF
    Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/ Sanger versus targeted NGS.Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC) followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC). The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy.Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits). There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150) to 31.3% (47/150). Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%). None of the homozygous samples were detected by dHPLC analysis.Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised population

    Radiological Hazards and Natural Radionuclide Distribution in Granitic Rocks of Homrit Waggat Area, Central Eastern Desert, Egypt

    Full text link
    Natural radioactivity, radiological hazard, and petrological studies of Homrit Waggat granitic rocks, Central Eastern Desert, Egypt were performed in order to assess their suitability as ornamental stone. On the basis of mineralogical and geochemical compositions, Homrit Waggat granitic rocks can be subdivided into two subclasses. The first class comprises granodiorite and tonalite (I-type) and is ascribed to volcanic arc, whereas the second one includes alkali-feldspar granite, syenogranite, and albitized granite with high-K calc alkaline character, which is related to post-orogenic granites.238 U,226 Ra,232 Th, and40 K activities of natural radionuclides occurring in the examined rocks were measured radiometrically using sodium iodide detector. Furthermore, assessment of the hazard indices—such as: annual effective dose (AED) with mean values (0.11, 0.09, 0.07, 0.05, and 0.03, standard value = 0.07); gamma radiation index (Iγ) with mean values (0.6, 0.5, 0.4, 0.3, and 0.14, standard value = 0.5); internal (Hin) with mean values (0.6, 0.5, 0.4, 0.3, and 0.2, standard value = 1.0); external (Hex) index (0.5, 0.4, 0.3, 0.24, and 0.12, standard value = 1.0); absorbed gamma dose rate (D) with mean values (86.4, 75.9, 53.5, 43.6, and 20.8, standard value = 57); and radium equivalent activity (Raeq) with mean values (180, 154, 106.6, 90.1, and 42.7, standard value = 370)—were evaluated with the knowledge of the natural radionuclides. The result of these indices falls within the acceptable worldwide limits. Therefore, we suggest that these rocks are safe to be used in industrial applications. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.RF 3621/2021The researcher (Hamdy A. Awad) is funded by a scholarship under the Joint Executive Program between Egypt and Russian Federation. The work of the author A.E. and the APC were funded by the “Dunarea de Jos” University of Galati, Romania and grant no. RF 3621/2021
    corecore