90 research outputs found

    Development of a Research Instrument for the Measurement of a Preschool Child's Freedom to Express Himself in Exploring and Manipulating His Environment

    Get PDF
    Family Relations and Child Developmen

    The fraction of activated N-methyl-d-Aspartate receptors during synaptic transmission remains constant in the presence of the glutamate release inhibitor riluzole

    Get PDF
    Excessive N-methyl-d-aspartate (NMDA) receptor activation is widely accepted to mediate calcium-dependent glutamate excitotoxicity. The uncompetitive, voltage-dependent NMDA receptor antagonist memantine has been successfully used clinically in the treatment of neurodegenerative dementia and is internationally registered for the treatment of moderate to severe Alzheimer′s disease. Glutamate release inhibitors (GRIs) may also be promising for the therapy of some neurodegenerative diseases. During the clinical use of GRIs, it could be questioned whether there would still be a sufficient number of active NMDA receptors to allow any additional effects of memantine or similar NMDA receptor antagonists. To address this question, we determined the fraction of NMDA receptors contributing to postsynaptic events in the presence of therapeutically relevant concentrations of the GRI riluzole (1 μM) using an in vitro hippocampal slice preparation. We measured the charge transfer of pharmacologically isolated excitatory synaptic responses before and after the application of the selective, competitive NMDA receptor antagonist D-AP5 (100 μM). The fraction of activated NMDA receptors under control conditions did not differ from those in the presence of riluzole. It is therefore likely that NMDA receptor antagonists would be able to exert additional therapeutic effects in combination therapy with GRIs

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Traumatic Spinal Cord Injury—Repair and Regeneration

    Get PDF
    BACKGROUND: Traumatic spinal cord injuries (SCI) have devastating consequences for the physical, financial, and psychosocial well-being of patients and their caregivers. Expediently delivering interventions during the early postinjury period can have a tremendous impact on long-term functional recovery. PATHOPHYSIOLOGY: This is largely due to the unique pathophysiology of SCI where the initial traumatic insult (primary injury) is followed by a progressive secondary injury cascade characterized by ischemia, proapoptotic signaling, and peripheral inflammatory cell infiltration. Over the subsequent hours, release of proinflammatory cytokines and cytotoxic debris (DNA, ATP, reactive oxygen species) cyclically adds to the harsh postinjury microenvironment. As the lesions mature into the chronic phase, regeneration is severely impeded by the development of an astroglial-fibrous scar surrounding coalesced cystic cavities. Addressing these challenges forms the basis of current and upcoming treatments for SCI. MANAGEMENT: This paper discusses the evidence-based management of a patient with SCI while emphasizing the importance of early definitive care. Key neuroprotective therapies are summarized including surgical decompression, methylprednisolone, and blood pressure augmentation. We then review exciting neuroprotective interventions on the cusp of translation such as Riluzole, Minocycline, magnesium, therapeutic hypothermia, and CSF drainage. We also explore the most promising neuroregenerative strategies in trial today including Cethrin™, anti-NOGO antibody, cell-based approaches, and bioengineered biomaterials. Each section provides a working knowledge of the key preclinical and patient trials relevant to clinicians while highlighting the pathophysiologic rationale for the therapies. CONCLUSION: We conclude with our perspectives on the future of treatment and research in this rapidly evolving field

    First-Principle and Experimental Study of a Gadolinium-Praseodymium-Cobalt Pseudobinary Intermetallic Compound

    No full text
    First-principles methods were used to determine the magnetic state of a simulated cobalt-based binary alloy (Gd,Pr)Co17 along with its corresponding lattice parameters and density. The resulting composition was fabricated using two methods arc-melting and induction-melting and compared with the calculated values. The induction-melted samples showed greater homogeneity and successfully produced the R2Co17 structure. Calculated values qualitatively predict ferromagnetic behavior and lattice parameters to be within a low percent. The development of magnetic alloys with the assistance of computational methods promises faster development of new functional materials
    corecore