47 research outputs found
Simultaneous determination of the kinetics of cardiac output, systemic O2 delivery and lung O2 uptake at exercise onset in men.
We tested whether the kinetics of systemic O2 delivery (Q'aO2) at exercise start was faster than that of lung O2 uptake (V' O2), being dictated by that of cardiac output (Q'), and whether changes in Q' would explain the postulated rapid phase of the V'O2 increase. Simultaneous determinations of beat-by-beat (BBB) Q' and Q' aO2, and breath-by-breath V'O2 at the onset of constant load exercises at 50 and 100 W were obtained on six men (age 24.2 +/-3.2 years, maximal aerobic power 333 +/- 61 W). V'O2 was determined using Grønlund’s algorithm. Q' was computed from BBB stroke volume (Qst, from arterial pulse pressure profiles) and heart rate (fH, electrocardiograpy) and calibrated against a steadystate method. This, along with the time course of hemoglobin concentration and arterial O2 saturation (infrared oximetry) allowed computation of BBB Q'aO2. The Q', Q'aO2 and V'O2 kinetics were analyzed with single and double exponential models. fH, Qst, Q', and V'O2 increased upon exercise onset to reach a new steady state. The
kinetics of Q'aO2 had the same time constants as that of Q'. The latter was twofold faster than that of V'O2. The V'O2 kinetics were faster than previously reported for muscle phosphocreatine decrease. Within a two-phase model, because of the Fick equation, the amplitude of phase I Q' changes fully explained the phase I of V'O2 increase. We suggest that in unsteady states, lung V' O2 is dissociated from muscle
O2 consumption. The two components of Q' and Q'aO2 kinetics may reflect vagal withdrawal and sympathetic activation
Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans.
Background.
Physical inactivity represents a major risk for cardiovascular disorders, such as hypertension, myocardial infarction or sudden death; however, underlying mechanisms are not clearly elucidated. Clinical and epidemiological investigations suggest, beyond molecular changes, the possibility of an induced impairment in autonomic cardiovascular regulation. However, this
hypothesis has not been tested directly.
Methods.
Accordingly, we planned a study with noninvasive, minimally intrusive, techniques on healthy volunteers. Participants were maintained for 90 days strictly in bed, 24 h a day, in head-down (S6-) position (HDBR). Physical activity was thus virtually abolished for the entire period of HDBR. We examined efferent muscle sympathetic nerve activity, as a measure of vascular sympathetic control, baroreceptor reflex sensitivity, heart rate variability (assessing cardiovagal regulation), RR and systolic arterial pressure and low-frequency and high-frequency normalized components (as a window on central oscillatory regulation).
Measures.
were obtained at rest and during simple maneuvers (moderate handgrip, lower body negative pressure and active standing) to assess potential changes in autonomic cardiovascular responsiveness to standard stimuli and the related oscillatory profiles. Results HDBR transiently reduced muscle sympathetic
nerve activity,RR,heart ratevariabilityandbaroreceptor reflex
sensitivity late during HDBR or early during the recovery phase. Conversely, oscillatory profiles of RR and systolic arterial pressure variability were maintained throughout. Responsiveness to test stimuli was also largely maintained
Phase I dynamics of cardiac output, systemic O2 delivery and lung O2 uptake at exercise onset in men in acute normobaric hypoxia.
We tested the hypothesis that vagal withdrawal plays a role in the rapid (phase I) cardiopulmonary response to exercise. To this aim, in five men (24.6+/-3.4 yr, 82.1+/-13.7 kg, maximal aerobic power 330+/-67 W), we determined beat-by-beat cardiac output (Q), oxygen delivery (QaO2), and breath-by-breath lung oxygen uptake (VO2) at light exercise (50 and 100 W) in normoxia and acute hypoxia (fraction of inspired O2=0.11), because the latter reduces resting vagal activity. We computed Q from stroke volume (Qst, by model flow) and heart rate (fH, electrocardiography), and QaO2 from Q and arterial O2 concentration. Double exponentials were fitted to the data. In hypoxia compared with normoxia, steady-state fH and Q were higher, and Qst and VO2 were unchanged. QaO2 was unchanged at rest and lower at exercise. During transients, amplitude of phase I (A1) for VO2 was unchanged. For fH, Q and QaO2, A1 was lower. Phase I time constant (tau1) for QaO2 and VO2 was unchanged. The same was the case for Q at 100 W and for fH at 50 W. Qst kinetics were unaffected. In conclusion, the results do not fully support the hypothesis that vagal withdrawal determines phase I, because it was not completely suppressed. Although we can attribute the decrease in A1 of fH to a diminished degree of vagal withdrawal in hypoxia, this is not so for Qst. Thus the dual origin of the phase I of Q and QaO2, neural (vagal) and mechanical (venous return increase by muscle pump action), would rather be confirmed
Cardiac output by model flow method from intra-arterial and finger tip pulse pressure profiles
Modelflow®, when applied to non-invasive fingertip pulse pressure recordings, is a poor predictor of cardiac output (Q’ litre· min-1). The use of constants established from the aortic elastic characteristics, which differ from those of finger arteries, may introduce signal distortions, leading to errors in computing Q’. We therefore hypothesized that peripheral recording of pulse pressure profiles undermines the measurement of Q’ withModelflow®, so we compared Modelflow® beat-by-beat Q’ values obtained simultaneously non-invasively from the finger and invasively from the radial artery at rest and during exercise. Seven subjects (age, 24.0 + - 2.9 years; weight, 81.2 + - 12.6 kg) rested, then exercised at 50 and 100 W, carrying a catheter with a pressure head in the left radial artery and the photoplethysmographic cuff of a finger pressure device on the third and fourth fingers of the contralateral hand. Pulse pressure from both devices was recorded simultaneously and stored on a PC for subsequent Q’ computation. The mean values of systolic, diastolic and mean arterial pressure at rest and exercise steady state were significantly (P < 0.05) lower from the finger than the intra-arterial catheter. The corresponding mean steady-state Q’ obtained from the finger (Q’porta) was significantly (P < 0.05) higher than that computed from the intra-arterial recordings (Q’pia). The line relating beat-by-beat Q’porta and Q’pia was y = 1.55x - 3.02 (r2 = 0.640). The bias was 1.44 litre · min-1 and the precision was 2.84 litre · min-1.The slope of this line was significantly higher than 1, implying a systematic overestimate of Q’ by Q’porta with respect to Q’pia. Consistent with the tested hypothesis, these results demonstrate that pulse pressure profiles from the finger provide inaccurate absolute Q’ values with respect to the radial artery, and therefore cannot be used without correction with a calibration factor calculated previously by measuring Q’ with an independent method
