research

Simultaneous determination of the kinetics of cardiac output, systemic O2 delivery and lung O2 uptake at exercise onset in men.

Abstract

We tested whether the kinetics of systemic O2 delivery (Q'aO2) at exercise start was faster than that of lung O2 uptake (V' O2), being dictated by that of cardiac output (Q'), and whether changes in Q' would explain the postulated rapid phase of the V'O2 increase. Simultaneous determinations of beat-by-beat (BBB) Q' and Q' aO2, and breath-by-breath V'O2 at the onset of constant load exercises at 50 and 100 W were obtained on six men (age 24.2 +/-3.2 years, maximal aerobic power 333 +/- 61 W). V'O2 was determined using Grønlund’s algorithm. Q' was computed from BBB stroke volume (Qst, from arterial pulse pressure profiles) and heart rate (fH, electrocardiograpy) and calibrated against a steadystate method. This, along with the time course of hemoglobin concentration and arterial O2 saturation (infrared oximetry) allowed computation of BBB Q'aO2. The Q', Q'aO2 and V'O2 kinetics were analyzed with single and double exponential models. fH, Qst, Q', and V'O2 increased upon exercise onset to reach a new steady state. The kinetics of Q'aO2 had the same time constants as that of Q'. The latter was twofold faster than that of V'O2. The V'O2 kinetics were faster than previously reported for muscle phosphocreatine decrease. Within a two-phase model, because of the Fick equation, the amplitude of phase I Q' changes fully explained the phase I of V'O2 increase. We suggest that in unsteady states, lung V' O2 is dissociated from muscle O2 consumption. The two components of Q' and Q'aO2 kinetics may reflect vagal withdrawal and sympathetic activation

    Similar works