55 research outputs found

    Energy Gaps and Kohn Anomalies in Elemental Superconductors

    Full text link
    The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors Pb and Nb was determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface

    Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy

    Get PDF
    Neutron resonance spin-echo spectroscopy was used to monitor the temperature evolution of the linewidths of transverse acoustic phonons in lead across the superconducting transition temperature, TcT_c, over an extended range of the Brillouin zone. For phonons with energies below the superconducting energy gap, a linewidth reduction of maximum amplitude ∼6μ\sim 6 \mueV was observed below TcT_c. The electron-phonon contribution to the phonon lifetime extracted from these data is in satisfactory overall agreement with {\it ab-initio} lattice-dynamical calculations, but significant deviations are found

    Visualizing the Formation of the Kondo Lattice and the Hidden Order in URu2Si2

    Full text link
    Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that emerge from the uranium f states in URu2Si2. We find that as the temperature is lowered, partial screening of the f electrons' spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states

    Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion.

    Get PDF
    Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f-electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f-moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb2. We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f-orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order-like transition through abrupt emergence of nontrivial 5f-electronic states that may resemble the "hidden-order" phase of URu2Si2

    Scanning microscopies of superconductors at very low temperatures

    Full text link
    We discuss basics of scanning tunneling microscopy and spectroscopy (STM/S) of the superconducting state with normal and superconducting tips. We present a new method to measure the local variations in the Andreev reflection amplitude between a superconducting tip and the sample. This method is termed Scanning Andreev Reflection Spectroscopy (SAS). We also briefly discuss vortex imaging with STM/S under an applied current through the sample, and show the vortex lattice as a function of the angle between the magnetic field and sample's surface

    Quasi particle interference of heavy fermions in resonant x ray scattering

    Get PDF
    Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Tailoring Superconductivity with Quantum Dislocations

    Get PDF
    Despite the established knowledge that crystal dislocations can affect a material’s superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material’s superconducting transition temperature (T[subscript c]) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T[subscript c]. These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T[subscript c] reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T[subscript c]. This provides a new pathway for engineering a material’s superconducting properties by using dislocations as an additional degree of freedom. Keywords: Dislocations; disordered superconductor; effective field theory; electron-dislocation interactionUnited States. Department of Energy. Office of Basic Energy Sciences (Grant DE-SC0001299)United States. Department of Energy. Office of Basic Energy Sciences (Grant DE-FG02-09ER46577)United States. Defense Advanced Research Projects Agency (Award HR0011-16-2-0041
    • …
    corecore