116 research outputs found
Detection of electronic nematicity using scanning tunneling microscopy
Electronic nematic phases have been proposed to occur in various correlated
electron systems and were recently claimed to have been detected in scanning
tunneling microscopy (STM) conductance maps of the pseudogap states of the
cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We
investigate the influence of anisotropic STM tip structures on such
measurements and establish, with a model calculation, the presence of a
tunneling interference effect within an STM junction that induces
energy-dependent symmetry-breaking features in the conductance maps. We
experimentally confirm this phenomenon on different correlated electron
systems, including measurements in the pseudogap state of Bi-2212, showing that
the apparent nematic behavior of the imaged crystal lattice is likely not due
to nematic order but is related to how a realistic STM tip probes the band
structure of a material. We further establish that this interference effect can
be used as a sensitive probe of changes in the momentum structure of the
sample's quasiparticles as a function of energy.Comment: Accepted for publication (PRB - Rapid Communications). Main text (5
pages, 4 figures) + Supplemental Material (4 pages, 4 figures
Energy Gaps and Kohn Anomalies in Elemental Superconductors
The momentum and temperature dependence of the lifetimes of acoustic phonons
in the elemental superconductors Pb and Nb was determined by resonant spin-echo
spectroscopy with neutrons. In both elements, the superconducting energy gap
extracted from these measurements was found to converge with sharp anomalies
originating from Fermi-surface nesting (Kohn anomalies) at low temperatures.
The results indicate electron many-body correlations beyond the standard
theoretical framework for conventional superconductivity. A possible mechanism
is the interplay between superconductivity and spin- or charge-density-wave
fluctuations, which may induce dynamical nesting of the Fermi surface
Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy
Neutron resonance spin-echo spectroscopy was used to monitor the temperature
evolution of the linewidths of transverse acoustic phonons in lead across the
superconducting transition temperature, , over an extended range of the
Brillouin zone. For phonons with energies below the superconducting energy gap,
a linewidth reduction of maximum amplitude eV was observed below
. The electron-phonon contribution to the phonon lifetime extracted from
these data is in satisfactory overall agreement with {\it ab-initio}
lattice-dynamical calculations, but significant deviations are found
Visualizing the Formation of the Kondo Lattice and the Hidden Order in URu2Si2
Heavy electronic states originating from the f atomic orbitals underlie a
rich variety of quantum phases of matter. We use atomic scale imaging and
spectroscopy with the scanning tunneling microscope (STM) to examine the novel
electronic states that emerge from the uranium f states in URu2Si2. We find
that as the temperature is lowered, partial screening of the f electrons' spins
gives rise to a spatially modulated Kondo-Fano resonance that is maximal
between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd
order phase transition from the Kondo lattice state into a phase with a hidden
order parameter. From tunneling spectroscopy, we identify a spatially
modulated, bias-asymmetric energy gap with a mean-field temperature dependence
that develops in the hidden order state. Spectroscopic imaging further reveals
a spatial correlation between the hidden order gap and the Kondo resonance,
suggesting that the two phenomena involve the same electronic states
Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion.
Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f-electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f-moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb2. We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f-orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order-like transition through abrupt emergence of nontrivial 5f-electronic states that may resemble the "hidden-order" phase of URu2Si2
Quasi particle interference of heavy fermions in resonant x ray scattering
Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu
Scanning microscopies of superconductors at very low temperatures
We discuss basics of scanning tunneling microscopy and spectroscopy (STM/S)
of the superconducting state with normal and superconducting tips. We present a
new method to measure the local variations in the Andreev reflection amplitude
between a superconducting tip and the sample. This method is termed Scanning
Andreev Reflection Spectroscopy (SAS). We also briefly discuss vortex imaging
with STM/S under an applied current through the sample, and show the vortex
lattice as a function of the angle between the magnetic field and sample's
surface
Giant phonon anomalies and central peak due to charge density wave formation in YBaCuO
The electron-phonon interaction is a major factor influencing the competition
between collective instabilities in correlated-electron materials, but its role
in driving high-temperature superconductivity in the cuprates remains poorly
understood. We have used high-resolution inelastic x-ray scattering to monitor
low-energy phonons in YBaCuO (superconducting
K), which is close to a charge density wave (CDW) instability. Phonons in a
narrow range of momentum space around the CDW ordering vector exhibit extremely
large superconductivity-induced lineshape renormalizations. These results imply
that the electron-phonon interaction has sufficient strength to generate
various anomalies in electronic spectra, but does not contribute significantly
to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW
nanodomains is observed in a wide temperature range above and below ,
suggesting that the gradual onset of a spatially inhomogeneous CDW domain state
with decreasing temperature is a generic feature of the underdoped cuprates
- …
