164 research outputs found

    Benefits of Motor Imagery for Human Space Flight: A Brief Review of Current Knowledge and Future Applications

    Get PDF
    Motor imagery (MI) is arguably one of the most remarkable capacities of the human mind. There is now strong experimental evidence that MI contributes to substantial improvements in motor learning and performance. The therapeutic benefits of MI in promoting motor recovery among patients with motor impairments have also been reported. Despite promising theoretical and experimental findings, the utility of MI in adapting to unusual conditions, such as weightlessness during space flight, has received far less attention. In this review, we consider how, why, where, and when MI might be used by astronauts, and further evaluate the optimum MI content. Practically, we suggest that MI might be performed before, during, and after exposure to microgravity, respectively, to prepare for the rapid changes in gravitational forces after launch and to reduce the adverse effects of weightlessness exposition. Moreover, MI has potential role in facilitating re-adaptation when returning to Earth after long exposure to microgravity. Suggestions for further research include a focus on the multi-sensory aspects of MI, the requirement to use temporal characteristics as a measurement tool, and to account for the knowledge-base or metacognitive processes underlying optimal MI implementation

    Experts bodies, experts minds: How physical and mental training shape the brain

    Get PDF
    Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define “expertise” from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of “pure” mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research

    Exercise dependence among customers from a Parisian sport shop

    Get PDF
    Abstract Aim of the study: We assessed exercise dependence (ED), alcohol and nicotine use disorders, eating disorders, hypochondria and compulsive buying and in a population of customers of a Parisian sport shop. Methods: Five hundred consecutive customers of a sport shop were invited to participate. Diagnostic of exercise dependence was made with the Exercise Addiction Inventory and a specific questionnaire checking all diagnostic criteria. The DSM-IV-TR criteria for bulimia, alcohol and nicotine use disorders were checked and all subjects answered the CAGE and Fagerström questionnaires. Hypochondria was assessed with the DSM-IV-TR criteria and the Whiteley Index of Health Anxiety. For all parameters, customers with (ED+) and without (ED-) exercise dependence were compared. Results: The prevalence of exercise dependence was 29.6%. Subjects from the ED+ group were younger than in the ED-group (27.1 vs 29.8 years) and there were more women. They were more dependent on alcohol, had higher scores at the CAGE questionnaire. ED+ subjects more often presented hypochondria (23 vs 15%), bulimia and binge eating and they more often made gifts to themselves and to others. Conclusions: Exercise dependence appears as a frequent and almost always unrecognized form of behavioral dependence in non clinical population frequenting sport shops. It is frequently associated to chemical dependence and eating disorders

    Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS

    Get PDF
    Background: Acquisition and consolidation of a new motor skill occurs gradually over long time span. Motor imagery (MI) and brain stimulation have been showed as beneficial approaches that boost motor learning, but little is known about the extent of their combined effects. Objective: Here, we aimed to investigate, for the first time, whether delivering multiple sessions of transcranial direct current stimulation (tDCS) over primary motor cortex during physical and MI practice might improve implicit motor sequence learning in a young population. Methods: Participants practiced a serial reaction time task (SRTT) either physically or through MI, and concomitantly received either an anodal (excitatory) or sham stimulation over the primary motor cortex during three successive days. The effect of anodal tDCS on the general motor skill and sequence specific learning were assessed on both acquisition (within-day) and consolidation (between-day) processes. We further compared the magnitude of motor learning reached after a single and three daily sessions of tDCS. Results: The main finding showed that anodal tDCS boosted MI practice, but not physical practice, during the first acquisition session. A second major result showed that compared to sham stimulation, multiple daily session of anodal tDCS, for both types of practice, resulted in greater implicit motor sequence learning rather than a single session of stimulation. Conclusions: The present study is of particular importance in the context of rehabilitation, where we postulate that scheduling mental training when patients are not able to perform physical movement might beneficiate from concomitant and consecutive brain stimulation sessions over M1 to promote functional recovery

    Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals

    Get PDF
    Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience

    Measuring motor imagery using psychometric, behavioural, and psychophysiological tools

    Get PDF
    Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exerc. Sport Sci. Rev., Vol. 39, No. 2, pp. 85Y92, 2011. This review examines the measurement of motor imagery (MI) processes. First, self-report measures of MI are evaluated. Next, mental chronometry measures are considered. Then, we explain how physiological indices of the autonomic nervous system can measure MI. Finally, we show how these indices may be combined to produce a measure of MI quality called the Motor Imagery Index. Key Words: motor imagery, mental imagery, psychometric measures, mental chronometry, autonomic nervous system, electrodermal and cardiac activities. MOTOR IMAGERY Motor imagery (MI), or the mental simulation of motor movement, is the cognitive rehearsal of an action without actually executing it (9,26). As the mental representation of a movement without the concomitant production of the muscle activity necessary for its implementation, MI has attracted increasing interest from researchers in sport science, psychology, and cognitive neuroscience During the past 15 years or so, we have conducted a number of studies on theoretical, practical, and rehabilitation issues involving MI. First, we have investigated the brain mechanisms underlying motor skill rehearsal and movement planning (11). Second, we have shown with others that the MI technique of mental practice (''seeing'' and ''feeling'' a movement in one's imagination before executing it) can increase physical strength performance (30) and enhance skill learning (3) and technical performance in athletes (4,32). Finally, we confirmed that MI training can facilitate rehabilitation from physical injury or neurological damage ((5) see (22) for a review). Elsewhere, we have provided a detailed account of research findings on MI (12). Considering that MI is a multidimensional construct (see model developed by Guillot and Collet (10)), we have measured its underlying processes using a combination of psychometric tests (18), qualitative procedures (19,25), chronometric methods in which MI processes are investigated by comparing the duration required to execute real and imagined actions (8), and psychophysiological techniques (1). Although these approaches have each yielded some interesting results (12), they have not yet been combined adequately to provide an aggregate index of MI quality. Therefore, the purpose of this review is to propose a rationale for our novel hypothesis that it is possible to calculate an index of MI quality by quantitatively combining psychometric, qualitative, chronometric, and psychophysiological measures. Our proposed Motor Imagery Index (MII) has significant implications for researchers and practitioners because it can be used to understand individual differences in MI and to assess the efficacy of MI interventions. PSYCHOMETRIC APPROACH For more than a century, researchers have used standardized self-report questionnaires to measure individual differences in imagery dimensions such as vividness (i.e., the clarity or sensory richness of an image) and controllability (i.e., the ease and accuracy with which an image can be manipulated mentally, see (24)). We have investigated both of these dimensions of imagery in sport settings. For example, we found that elite canoe-slalom competitors reported significantly greater use of MI than did less proficient counterparts when preparing for races (17). We investigated the effects of MI on the learning (through both physical and mental practice) of volleyball technique among intermediate performers of this sport (32). We found that a combination of MI and physical practice produced the most efficien

    Effects of Action Observation and Action Observation Combined with Motor Imagery on Maximal Isometric Strength

    Get PDF
    Action observation (AO) alone or combined with motor imagery (AO + MI) has been shown to engage the motor system. While recent findings support the potential relevance of both techniques to enhance muscle function, this issue has received limited scientific scrutiny. In the present study, we implemented a counterbalanced conditions design where 21 participants performed 10 maximal isometric contractions (12-s duration) of elbow flexor muscles against a force platform. During the inter-trial rest periods, participants completed i) AO of the same task performed by an expert athlete, ii) AO + MI, i.e. observation of an expert athlete while concurrently imagining oneself performing the same task, and iii) watching passively a video documentary about basketball shooting (Control). During force trials, we recorded the total force and integrated electromyograms from the biceps brachii and anterior deltoideus. We also measured skin conductance from two finger electrodes as an index of sympathetic nervous system activity. Both AO and AO + MI outperformed the Control condition in terms of total force (2.79–3.68%, p < 0.001). For all conditions, we recorded a positive relationship between the biceps brachii activation and the total force developed during the task. However, only during AO was a positive relationship observed between the activation of the anterior deltoideus and the total force. We interpreted the results with reference to the statements of the psycho-neuromuscular theory of mental practice. Present findings extend current knowledge regarding the priming effects of AO and AO + MI on muscle function, and may contribute to the optimization of training programs in sports and rehabilitation

    Imaginer, c'est réussir

    No full text
    • …
    corecore