211 research outputs found

    Exome sequencing in dementia with Lewy bodies.

    Get PDF
    Dementia with Lewy bodies (DLB) is the second most common form of degenerative dementia. Siblings of affected individuals are at greater risk of developing DLB, but little is known about the underlying genetic basis of the disease. We set out to determine whether mutations in known highly penetrant neurodegenerative disease genes are found in patients with DLB. Whole-exome sequencing was performed on 91 neuropathologically confirmed cases of DLB, supplemented by independent APOE genotyping. Genetic variants were classified using established criteria, and additional neuropathological examination was performed for putative mutation carriers. Likely pathogenic variants previously described as causing monogenic forms of neurodegenerative disease were found in 4.4% of patients with DLB. The APOE ɛ4 allele increased the risk of disease (P=0.0001), conferred a shorter disease duration (P=0.043) and earlier age of death (P=0.0015). In conclusion, although known pathogenic mutations in neurodegenerative disease genes are uncommon in DLB, known genetic risk factors are present in >60% of cases. APOE ɛ4 not only modifies disease risk, but also modulates the rate of disease progression. The reduced penetrance of reported pathogenic alleles explains the lack of a family history in most patients, and the presence of variants previously described as causing frontotemporal dementia suggests a mechanistic overlap between DLB and other neurodegenerative diseases.This study was funded by the NHS National Institute of Health Research Biomedical Research Unit for Lewy body dementia at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. Tissue for this study was provided by Newcastle Brain Tissue Resource, which is funded in part by a grant from the UK Medical Research Council and by Brains for Dementia Research, a joint venture between Alzheimer’s Society and Alzheimer’s Research UK. MJK is a Wellcome Trust Clinical Research Training Fellow. PFC is a Wellcome Trust Senior Fellow in Clinical Science and National Institute for Health Research Senior Investigator. He receives funding from the Medical Research Council and the National Institute for Health Research Biomedical Research Centre for Ageing and Age-Related Disease award to the Newcastle upon Tyne Foundation Hospitals National Health Service Trust. The funding sources had no role in study design, data collection/analysis, the writing of the paper or the decision of when or where to publish it. The views expressed here are the views of the authors and not necessarily those of the NHS, NIHR or the Department of Health.This is the final published version. It first appeared at http://www.nature.com/tp/journal/v6/n2/full/tp2015220a.html

    Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis

    Get PDF
    Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterised by progressive destruction of intrahepatic bile ducts. The strongest genetic association is with HLA-DQA1*04:01, but at least three additional independent HLA haplotypes contribute to susceptibility. We used dense single nucleotide polymorphism (SNP) data in 2861 PBC cases and 8514 controls to impute classical HLA alleles and amino acid polymorphisms using state-of-the-art methodologies. We then demonstrated through stepwise regression that association in the HLA region can be largely explained by variation at five separate amino acid positions. Three-dimensional modelling of protein structures and calculation of electrostatic potentials for the implicated HLA alleles/amino acid substitutions demonstrated a correlation between the electrostatic potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/amino acid substitutions conferring PBC susceptibility/protection, highlighting potential new avenues for future functional investigation

    Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool

    Get PDF
    Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants

    Haplotype Estimation from Fuzzy Genotypes Using Penalized Likelihood

    Get PDF
    The Composite Link Model is a generalization of the generalized linear model in which expected values of observed counts are constructed as a sum of generalized linear components. When combined with penalized likelihood, it provides a powerful and elegant way to estimate haplotype probabilities from observed genotypes. Uncertain (“fuzzy”) genotypes, like those resulting from AFLP scores, can be handled by adding an extra layer to the model. We describe the model and the estimation algorithm. We apply it to a data set of accurate human single nucleotide polymorphism (SNP) and to a data set of fuzzy tomato AFLP scores

    A randomized clinical trial of a peri-operative behavioral intervention to improve physical activity adherence and functional outcomes following total knee replacement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total knee replacement (TKR) is a common and effective surgical procedure to relieve advanced knee arthritis that persists despite comprehensive medical treatment. Although TKR has excellent technical outcomes, significant variation in patient-reported functional improvement post-TKR exists. Evidence suggests that consistent post-TKR exercise and physical activity is associated with functional gain, and that this relationship is influenced by emotional health. The increasing use of TKR in the aging US population makes it critical to find strategies that maximize functional outcomes.</p> <p>Methods/Design</p> <p>This randomized clinical trial (RCT) will test the efficacy of a theory-based telephone-delivered Patient Self-Management Support intervention that seeks to enhance adherence to independent exercise and activity among post- TKR patients. The intervention consists of 12 sessions, which begin prior to surgery and continue for approximately 9 weeks post-TKR. The intervention condition will be compared to a usual care control condition using a randomized design and a probabilistic sample of men and women. Assessments are conducted at baseline, eight weeks, and six- and twelve- months. The project is being conducted at a large healthcare system in Massachusetts. The study was designed to provide greater than 80% power for detecting a difference of 4 points in physical function (SF36/Physical Component Score) between conditions (standard deviation of 10) at six months with secondary outcomes collected at one year, assuming a loss to follow up rate of no more than 15%.</p> <p>Discussion</p> <p>As TKR use expands, it is important to develop methods to identify patients at risk for sub-optimal functional outcome and to effectively intervene with the goal of optimizing functional outcomes. If shown efficacious, this peri-TKR intervention has the potential to change the paradigm for successful post-TKR care. We hypothesize that Patient Self-Management Support to enhance adherence to independent activity and exercise will enhance uniform, optimal improvement in post-TKR function and patient autonomy, the ultimate goals of TKR.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00566826">NCT00566826</a></p

    High frequency of CHD7 mutations in congenital hypogonadotropic hypogonadism

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is characterized by lack of normal pubertal development due to deficient gonadotropin-releasing hormone (GnRH) secretion or action, and is caused by genetic defects in several genes. Mutations in the CHD7 gene cause CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and development, Genital hypoplasia and Ear abnormalities), but have also been found in patients with isolated CHH. The aim of this study was to identify CHD7 mutations in patients with CHH. Fifty Portuguese patients with CHH were screened for mutations in the CHD7 gene by DNA sequencing. Eight (16%) patients had CHD7 rare sequence variants that consisted of six missense (p.Gly388Glu, p.His903Pro, p.Thr1082Ile, p.Val1452Leu, p.Asp1854Gly, and p.Arg2065His) and two synonymous (p.Ser559Ser, and p.Ala2785Ala) mutations. Five of these mutations have never been reported before. Three CHD7 mutations occurred in patients that had mutations in additional CHH-genes. This study uncovered novel genetic variants that expand the known spectrum of mutations associated with CHH. The frequency of CHD7 mutations in this cohort was higher than that of other major CHH-genes and confirms the importance of including CHD7 in the genetic testing of CHH, even in the absence of additional CHARGE features.info:eu-repo/semantics/publishedVersio

    Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling

    Get PDF
    The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms
    corecore