293 research outputs found

    Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron

    Get PDF
    A new exclusion limit for the electromagnetic production of a light U(1) gauge boson {\gamma}' decaying to e^+e^- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e^+e^- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c^2 < m_e^+e^- < 300 MeV/c^2. This experiment demonstrates the potential of high current and high resolution fixed target experiments for the search for physics beyond the standard model.Comment: 4 pages, 7 figure

    Reply to Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    Get PDF
    In arXiv:1108.3058v1 [nucl-ex], Arrington criticizes the Coulomb corrections we applied in the analysis of high precision form factor data (see Phys.Rev.Lett.105:242001, 2010, arXiv:1007.5076v3 [nucl-ex]). We show, by comparing different calculations cited in the Comment, that the criticism of the Comment neglects the large uncertainty of "more modern" TPE corrections. This uncertainty has also been seen in recent polarized measurements. We rerun our analysis using one of these calculations. The results show that the Comment exaggerates the quantitative effect at small Q^2.Comment: 1 page, 2 figure, To appear as a Reply Comment in Physical Review Letter

    The electric and magnetic form factors of the proton

    Get PDF
    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of 0.003Q210.003 \lesssim Q^2 \lesssim 1\ GeV2^2. The average point-to-point error of the cross sections in this experiment is \sim 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low Q2Q^2 values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.Comment: 38 pages, 20 figures. Updated data files. PRC versio

    High-precision determination of the electric and magnetic form factors of the proton

    Get PDF
    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.Comment: 5 pages, 2 figures, published in Phys. Rev. Lett. v3: added references, updated text, color figure

    Measurement of the Target-Normal Single-Spin Asymmetry in Quasielastic Scattering from the Reaction \u3csup\u3e3\u3c/sup\u3eHe\u3csup\u3e↑\u3c/sup\u3e(\u3cem\u3ee\u3c/em\u3e,\u3cem\u3ee\u3c/em\u3e′ )

    Get PDF
    We report the first measurement of the target single-spin asymmetry, Ay, in quasielastic scattering from the inclusive reaction 3He↑(e,e′ ) on a 3He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero Ay can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q2=0.13, 0.46, and 0.97  GeV2. These measurements demonstrate, for the first time, that the 3He asymmetry is clearly nonzero and negative at the 4σ–9σ level. Using measured proton-to-3He cross-section ratios and the effective polarization approximation, neutron asymmetries of −(1–3)% were obtained. The neutron asymmetry at high Q2 is related to moments of the generalized parton distributions (GPDs). Our measured neutron asymmetry at Q2=0.97  GeV2 agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions

    Search for light massive gauge bosons as an explanation of the (g2)μ(g-2)_\mu anomaly at MAMI

    Get PDF
    A massive, but light abelian U(1) gauge boson is a well motivated possible signature of physics beyond the Standard Model of particle physics. In this paper, the search for the signal of such a U(1) gauge boson in electron-positron pair-production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing parameter of down to ϵ2=8×107\epsilon^2 = 8\times 10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.Comment: 4 pages, 3 figure

    New detectors for the kaon and hypernuclear experiments with KaoS at MAMI and with PANDA at GSI

    Get PDF
    The KaoS spectrometer at the Mainz Microtron MAMI, Germany, is perceived as the ideal candidate for a dedicated spectrometer in kaon and hypernuclei electroproduction. KaoS will be equipped with new read-out electronics, a completely new focal plane detector package consisting of scintillating fibres, and a new trigger system. First prototypes of the fibre detectors and the associated new front-end electronics are shown in this contribution. The Mainz hypernuclei research program will complement the hypernuclear experiments at the planned FAIR facility at GSI, Germany. At the proposed antiproton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the PANDA Collaboration. The experiments require the operation of high purity germanium (HPGe) detectors in high magnetic fields (B= 1T) in the presence of a large hadronic background. The performance of high resolution Ge detectors in such an environment has been investigated.Comment: Presentation at International Symposium on the Development of Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, Stanford, Ca (SNIC06), 6 pages, LaTeX, 11 eps figure

    Measurement of the Beam-Recoil Polarization in Low-Energy Virtual Compton Scattering from the Proton

    Get PDF
    Double-polarization observables in the reaction epepγ\vec{e}p \rightarrow e'\vec{p'}\gamma{} have been measured at Q2=0.33(GeV/c)2Q^2=0.33 (GeV/c)^2. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLTP_{LT}^\perp is extracted for the first time, with the value (15.4±3.3(stat.)2.4+1.5(syst.))GeV2(-15.4 \pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton
    corecore