24 research outputs found

    Stresses in adhesively bonded joints: A closed form solution

    Get PDF
    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results

    Rosuvastatin Prevents Angiotensin II-Induced Vascular Changes by Inhibition of Nad(P)H Oxidase and Cyclooxygenase-1.

    No full text
    BACKGROUND AND PURPOSE: NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. EXPERIMENTAL APPROACH: Male rats received angiotensin II (120 ng·kg-1·min-1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg -1·day-1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. KEY RESULTS: In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF 1α, and enhanced copper/zinc-superoxide dismutase expression. CONCLUSION AND IMPLICATIONS: Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defences

    Rosuvastatin Prevents Angiotensin II-Induced Vascular Changes by Inhibition of Nad(P)H Oxidase and Cyclooxygenase-1.

    No full text
    BACKGROUND AND PURPOSE: NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. EXPERIMENTAL APPROACH: Male rats received angiotensin II (120 ng\ub7kg-1\ub7min-1, subcutaneously) for 14 days with or without rosuvastatin (10 mg\ub7kg -1\ub7day-1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. KEY RESULTS: In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF 1\u3b1, and enhanced copper/zinc-superoxide dismutase expression. CONCLUSION AND IMPLICATIONS: Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defences

    Resistance artery mechanics and composition in angiotensin II-infused mice: effects of cyclooxygenase-1 inhibition

    No full text
    AIMS: The aim of this study was to investigate the role of cyclooxygenase (COX)-1 on vascular alterations in structure, mechanics, and extracellular matrix (ECM) components induced by angiotensin (Ang) II in mesenteric arteries from wild-type (WT) and COX-1 knockout (COX-1(-/-)) mice. METHODS AND RESULTS: Animals were infused with vehicle or Ang II (400 ng/kg/min, s.c.) ± SC-560 (COX-1 inhibitor), DFU (COX-2 inhibitor), or SQ-29548 (TP receptor antagonist). After 2 weeks, vessels were isolated and exposed to intraluminal pressures (3-140 mmHg, pressurized myograph) to determine mechanical properties. Angiotensin II-induced vascular hypertrophic remodelling in WT was reversed by SC-560 or SQ-29548, but unaffected by DFU. Angiotensin II increased vessel stiffness (P< 0.01), this effect being ameliorated by SC-560 or SQ-29548, but unmodified by DFU. Angiotensin II failed to modify vessel elasticity in COX-1(-/-) mice. In WT vessels, Ang II enhanced COX-1 immunostaining, induced collagen and fibronectin depositions and decreased elastin content (P< 0.01). These effects were reversed by SC-560 or SQ-29548, but unaffected by DFU. In COX-1(-/-) mice, Ang II did not affect ECM contents. In WT, Ang II increased COX-1 and decreased COX-2 expression, and enhanced the vascular release of 6-keto-PGF1α which was prevented by COX-1 blockade. Human coronary artery smooth muscle cells, incubated with Ang II, showed an increased expression of procollagen I, which was abrogated by SC-560 or SQ-29548. CONCLUSION: Angiotensin II-induced alterations of resistance arteries in structure, mechanics, and ECM composition were prevented by COX-1 inhibition and TP receptor antagonism, indicating that Ang II-mediated vascular damage is mediated by COX-1-derived prostanoid prostacyclin, activating TP receptors

    Resistance artery mechanics and composition in angiotensin II-infused mice: effects of cyclooxygenase-1 inhibition

    No full text
    Aims The aim of this study was to investigate the role of cyclooxygenase (COX)-1 on vascular alterations in structure, mechanics, and extracellular matrix (ECM) components induced by angiotensin (Ang) II in mesenteric arteries from wild-type (WT) and COX-1 knockout (COX-1(-/-)) mice. Methods and results Animals were infused with vehicle or Ang II (400 ng/kg/min, s.c.) +/- SC-560 (COX-1 inhibitor), DFU (COX-2 inhibitor), or SQ-29548 (TP receptor antagonist). After 2 weeks, vessels were isolated and exposed to intraluminal pressures (3-140 mmHg, pressurized myograph) to determine mechanical properties. Angiotensin II-induced vascular hypertrophic remodelling in WT was reversed by SC-560 or SQ-29548, but unaffected by DFU. Angiotensin II increased vessel stiffness (P < 0.01), this effect being ameliorated by SC-560 or SQ-29548, but unmodified by DFU. Angiotensin II failed to modify vessel elasticity in COX-1(-/-) mice. In WT vessels, Ang II enhanced COX-1 immunostaining, induced collagen and fibronectin depositions and decreased elastin content (P < 0.01). These effects were reversed by SC-560 or SQ-29548, but unaffected by DFU. In COX-1(-/-) mice, Ang II did not affect ECM contents. In WT, Ang II increased COX-1 and decreased COX-2 expression, and enhanced the vascular release of 6-keto-PGF1 alpha which was prevented by COX-1 blockade. Human coronary artery smooth muscle cells, incubated with Ang II, showed an increased expression of procollagen I, which was abrogated by SC-560 or SQ-29548. Conclusion Angiotensin II-induced alterations of resistance arteries in structure, mechanics, and ECM composition were prevented by COX-1 inhibition and TP receptor antagonism, indicating that Ang II-mediated vascular damage is mediated by COX-1-derived prostanoid prostacyclin, activating TP receptors

    Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

    No full text
    In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question

    Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

    No full text
    In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question
    corecore