12 research outputs found

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    All-plasmonic electro-optic modulators

    No full text

    Deep learning based digital backpropagation demonstrating SNR gain at low complexity in a 1200 km transmission link

    No full text
    A deep learning (DL) based digital backpropagation (DBP) method with a 1 dB SNR gain over a conventional 1 step per span DBP is demonstrated in a 32 GBd 16QAM transmission across 1200 km. The new DL-DPB is shown to require 6 times less computational power over the conventional DBP scheme. The achievement is possible due to a novel training method in which the DL-DBP is blind to timing error, state of polarization rotation, frequency offset and phase offset. An analysis of the underlying mechanism is given. The applied method first undoes the dispersion, compensates for nonlinear effects in a distributed fashion and reduces the out of band nonlinear modulation due to compensation of the nonlinearities by having a low pass characteristic. We also show that it is sufficient to update the elements of the DL network using a signal with high nonlinearity when dispersion or nonlinearity conditions changes. Lastly, simulation results indicate that the proposed scheme is suitable to deal with impairments from transmission over longer distances. © 2020 Optical Society of America.ISSN:1094-408

    Deep Learning Based Digital Backpropagation Enabling SNR Gain at Low Complexity

    No full text
    A computationally efficient deep learning based digital backpropagation (DL-DBP) algorithm providing a 1.9 dB SNR over a conventional linear compensation (chromatic dispersion compensation algorithm) and a 1 dB gain over a conventional back-propagation algorithm of the same complexity is presented. The algorithm has been tested in a 1200km transmission experiment. Also, if the algorithm is tested against a conventional digital backpropagation algorithm with the gain, then the new algorithm requires a factor 6 lower complexity. We discuss its training procedure and its principle. We discuss its training procedure and its principle.ISSN:0277-786

    Monolithic High-Speed Transmitter Enabled by BiCMOS-Plasmonic Platform

    No full text
    A monolithic BiCMOS-plasmonic transmitter offering 120 GBd NRZ-OOK is demonstrated. The chip comprises an electronic-photonic layer stack. The SiGe BiCMOS electrical layers offer PRBS generation and 4:1 power multiplexing, while the plasmonic layer offers electro-optical modulation at highest speed
    corecore