48 research outputs found

    Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition.

    Get PDF
    Membrane-less organelles resulting from liquid-liquid phase separation of biopolymers into intracellular condensates control essential biological functions, including messenger RNA processing, cell signalling and embryogenesis1-4. It has recently been discovered that several such protein condensates can undergo a further irreversible phase transition, forming solid nanoscale aggregates associated with neurodegenerative disease5-7. While the irreversible gelation of protein condensates is generally related to malfunction and disease, one case where the liquid-to-solid transition of protein condensates is functional, however, is that of silk spinning8,9. The formation of silk fibrils is largely driven by shear, yet it is not known what factors control the pathological gelation of functional condensates. Here we demonstrate that four proteins and one peptide system, with no function associated with fibre formation, have a strong propensity to undergo a liquid-to-solid transition when exposed to even low levels of mechanical shear once present in their liquid-liquid phase separated form. Using microfluidics to control the application of shear, we generated fibres from single-protein condensates and characterized their structural and material properties as a function of shear stress. Our results reveal generic backbone-backbone hydrogen bonding constraints as a determining factor in governing this transition. These observations suggest that shear can play an important role in the irreversible liquid-to-solid transition of protein condensates, shed light on the role of physical factors in driving this transition in protein aggregation-related diseases and open a new route towards artificial shear responsive biomaterials

    Elucidation of the liver pathophysiology of COVID-19 patients using liver-on-a-chips

    Get PDF
    新型コロナウイルス感染症(COVID-19)研究のための肝臓チップの開発 --肝障害の病態解明と治療薬の評価--. 京都大学プレスリリース. 2023-03-08.Using organ-on-a-chip technology to elucidate the liver pathophysiology of COVID-19 patients. 京都大学プレスリリース. 2023-03-08.SARS-CoV-2 induces severe organ damage not only in the lung but also in the liver, heart, kidney, and intestine. It is known that COVID-19 severity correlates with liver dysfunction, but few studies have investigated the liver pathophysiology in COVID-19 patients. Here, we elucidated liver pathophysiology in COVID-19 patients using organs-on-a-chip technology and clinical analyses. First, we developed liver-on-a-chip (LoC) which recapitulating hepatic functions around the intrahepatic bile duct and blood vessel. We found that hepatic dysfunctions, but not hepatobiliary diseases, were strongly induced by SARS-CoV-2 infection. Next, we evaluated the therapeutic effects of COVID-19 drugs to inhibit viral replication and recover hepatic dysfunctions, and found that the combination of anti-viral and immunosuppressive drugs (Remdesivir and Baricitinib) is effective to treat hepatic dysfunctions caused by SARS-CoV-2 infection. Finally, we analyzed the sera obtained from COVID-19 patients, and revealed that COVID-19 patients, who were positive for serum viral RNA, are likely to become severe and develop hepatic dysfunctions, as compared with COVID-19 patients who were negative for serum viral RNA. We succeeded in modeling the liver pathophysiology of COVID-19 patients using LoC technology and clinical samples

    Hierarchical propagation of structural features in protein nanomaterials

    Get PDF
    Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils

    Hierarchical propagation of structural features in protein nanomaterials

    Get PDF
    Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils

    Calendar age and puberty-related development of regional gray matter volume and white matter tracts during adolescence

    Get PDF
    Background Adolescence is a critical time for brain development. Findings from previous studies have been inconsistent, failing to distinguish the influence of pubertal status and aging on brain maturation. The current study sought to address these inconsistencies, addressing the trajectories of pubertal development and aging by longitudinally tracking structural brain development during adolescence. Methods Two cohorts of healthy children were recruited (cohort 1: 9–10 years old; cohort 2: 12–13 years old at baseline). MRI data were acquired for gray matter volume and white matter tract measures. To determine whether age, pubertal status, both or their interaction best modelled longitudinal data, we compared four multi-level linear regression models to the null model (general brain growth indexed by total segmented volume) using Bayesian model selection. Results Data were collected at baseline (n = 116), 12 months (n = 97) and 24 months (n = 84) after baseline. Findings demonstrated that the development of most regional gray matter volume, and white matter tract measures, were best modelled by age. Interestingly, precentral and paracentral regions of the cortex, as well as the accumbens demonstrated significant preference for the pubertal status model. None of the white matter tract measures were better modelled by pubertal status. Limitations: The major limitation of this study is the two-cohort recruitment. Although this allowed a faster coverage of the age span, a complete per person trajectory over 6 years of development (9–15 years) could not be investigated. Conclusions Comparing the impact of age and pubertal status on regional gray matter volume and white matter tract measures, we found age to best predict longitudinal changes. Further longitudinal studies investigating the differential influence of puberty status and age on brain development in more diverse samples are needed to replicate the present results and address mechanisms underlying norm-variants in brain development

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease

    No full text
    Liver X receptors (LXRs) are regulators of cholesterol metabolism that also modulate immune responses. Inactivation of LXR α and β in mice leads to autoimmunity; however, how the regulation of cholesterol metabolism contributes to autoimmunity is unclear. Here we found that cholesterol loading of CD11c cells triggered the development of autoimmunity, whereas preventing excess lipid accumulation by promoting cholesterol efflux was therapeutic. LXRβ-deficient mice crossed to the hyperlipidemic ApoE-deficient background or challenged with a high-cholesterol diet developed autoantibodies. Cholesterol accumulation in lymphoid organs promoted T cell priming and stimulated the production of the B cell growth factors Baff and April. Conversely, B cell expansion and the development of autoantibodies in ApoE/LXR-β-deficient mice was reversed by ApoA-I expression. These findings implicate cholesterol imbalance as a contributor to immune dysfunction and suggest that stimulating HDL-dependent reverse cholesterol transport could be beneficial in the setting of autoimmune disease.This work was supported by NIH grants HL030568, DK063491, and DK063491 to P.T. and AI093768 to S.J.B. and Ministerio de Economia y Competitividad (MINECO) grant SAF2014-56819-R to A.C.Peer Reviewe

    Regional grey matter volume reduction in adolescents engaging in non-suicidal self-injury

    No full text
    There is a high prevalence of non-suicidal self-injury (NSSI) amongst adolescents worldwide and therefore an urgency to investigate the underlying mechanisms that may facilitate such behaviours. This study aimed to investigate neurobiological alterations, specifically in regional brain volumes of the frontolimbic system, in adolescents engaging in NSSI in comparison to healthy controls. Regional grey matter volumes were compared between 29 adolescent female patients who presented with incidents of NSSI on >= 5 days within the last 12 months (DSM-5 criteria for NSSI) and 21 healthy age, gender and education matched controls who had never received any psychiatric diagnosis/treatment, or engaged in NSSI. Significant group effects in regional brain volumes were observed in insula, and a suggested change in the anterior cingulate cortex (ACC), while controlling for total segmented volume. Additionally, ACC volume showed a significant association with past suicide attempts, where estimated marginal means showed even smaller ACC volume in adolescents engaging in NSSI with a history of suicide attempt in comparison to those with no history of suicide attempt, including healthy controls. This study provides the first evidence of volumetric changes in adolescents engaging in NSSI and a potential neurobiological link between NSSI and suicide attempt

    Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe

    Full text link
    We investigate the overall temporal behavior of the bubbles produced by 20-ns- and 100-ns-pulse-duration laser ablations in water using a laser-beam-transmission probe (LBTP). This technique gives the transmission signal attributed to the whole bubble dynamics, including the secondary oscillations, with a single laser shot. Comparing the signals obtained for both pulse durations, the periods of the first oscillation of the bubble are almost the same. Nevertheless, the periods of the subsequent oscillations are significantly different depending on the pulse duration. Such results are obtained by virtue of the LBTP technique
    corecore