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Abstract
SARS-CoV-2 induces severe organ damage not only in the lung but also in the liver, heart, kidney, and intestine. It is known that COVID-19 
severity correlates with liver dysfunction, but few studies have investigated the liver pathophysiology in COVID-19 patients. Here, we 
elucidated liver pathophysiology in COVID-19 patients using organs-on-a-chip technology and clinical analyses. First, we developed 
liver-on-a-chip (LoC) which recapitulating hepatic functions around the intrahepatic bile duct and blood vessel. We found that 
hepatic dysfunctions, but not hepatobiliary diseases, were strongly induced by SARS-CoV-2 infection. Next, we evaluated the 
therapeutic effects of COVID-19 drugs to inhibit viral replication and recover hepatic dysfunctions, and found that the combination of 
anti-viral and immunosuppressive drugs (Remdesivir and Baricitinib) is effective to treat hepatic dysfunctions caused by SARS-CoV-2 
infection. Finally, we analyzed the sera obtained from COVID-19 patients, and revealed that COVID-19 patients, who were positive for 
serum viral RNA, are likely to become severe and develop hepatic dysfunctions, as compared with COVID-19 patients who were 
negative for serum viral RNA. We succeeded in modeling the liver pathophysiology of COVID-19 patients using LoC technology and 
clinical samples.

Keywords: SARS-CoV-2, COVID-19, organs-on-a-chip, liver-on-a-chip, Remdesivir, Baricitinib

Significance Statement

Using liver-on-a-chip that included an intrahepatic bile duct (ibd-LoC) or blood vessel (bv-LoC), it was found that SARS-CoV-2 induced 
more severe hepatic damages in bv-LoCs than in ibd-LoCs. Consistently, in serum samples obtained from severe COVID-19 patients, 
the levels of hepatic enzymes were elevated, and viral RNA was detected. These results suggested that the pathophysiology of 
COVID-19 patients could be revealed by using LoC technology and clinical samples.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
the causative virus of Coronavirus disease 2019 (COVID-19). 
SARS-CoV-2 induces multi-organ damage by infecting not only 
the respiratory tract but also other organs. In addition to respira-
tory diseases, extrapulmonary diseases, including liver, heart, 
kidney, intestine, or neuron dysfunctions, are observed in 
COVID-19 patients (1). Because COVID-19 severity is known to 

correlate with liver dysfunction, it is important to understand 
the liver pathophysiology of COVID-19 patients (2). SARS-CoV-2 

spike protein was detected in liver autopsy samples from patients 

who died of COVID-19, suggesting that SARS-CoV-2 may infect the 

liver (3). It is possible to isolate SARS-CoV-2 from liver autopsy 

samples as well as from lung autopsy samples of COVID-19 pa-

tients (4). In severe COVID-19 patients, it is known that multiple 

organ failure is observed two to three weeks after the onset, but 
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recent important cohorts of patients with COVID-19 requiring 
hospitalization have demonstrated that liver injury markers, ala-
nine aminotransferase (ALT) and aspartate aminotransferase 
(AST), were increased sharply only 1 day after admission (4). A re-
cent study showed that zone-specific damage is observed in 
COVID-19 patients. In the hepatic region around the blood vessels, 
inflammatory responses were induced, and the portal vein was 
enlarged (5, 6). On the other hand, significant histological damage 
was not observed in the hepatic region around the bile ducts (6). 
However, the process and mechanism of the liver lesions caused 
by SARS-CoV-2 infection have not been fully elucidated. 
Therefore, a liver model that can elucidate the liver pathophysi-
ology in COVID-19 patients has to be developed.

We recently generated liver-on-a-chips (LoCs) using a micro-
fluidic device with two parallel microchannels for pharmaceutical 
research (7, 8). Using LoC technology, we can culture liver cells in 
three-dimensional (3D) conditions and expose them to physio-
logical stresses, such as mechanical stretch or fluid flow. Here, 
we refined our LoCs to include either an intrahepatic bile duct 
(ibd-LoC) or blood vessel (bv-LoC) to clarify the pathophysiology 
of the liver around the bile ducts or blood vessels, respectively. 
Using ibd- and bv-LoCs, we recapitulated and elucidated the liver 
pathophysiology of COVID-19 patients and evaluated the thera-
peutic efficacy of COVID-19 drugs.

Technical advances in in vitro cell models, including organs- 
on-a-chips, have made it possible to accurately reproduce patho-
physiologies in vitro. However, it is still difficult to clarify the 
whole picture of pathophysiology using only these models. Thus, 
an analysis of clinical samples is also needed. We have recently 
clarified the respiratory pathophysiology of COVID-19 patients using 
airway-on-a-chips and clinical samples (9). We believe that liver 
damage in severe COVID-19 patients is the next important issue to 
be resolved after respiratory damage, thus we attempted to recap-
itulate the liver pathophysiology of COVID-19 patients by simultan-
eously performing SARS-CoV-2 experiments using LoCs and 
analyzing clinical specimens of COVID-19 patients.

Results
Generation of ibd-LoCs and bv-LoCs
To reproduce the hepatic region around the bile duct, we gener-
ated ibd-LoCs that contain hepatocytes and cholangiocytes in 
the microfluidic devices. We also generated bv-LoCs that contain 
hepatocytes and endothelial cells in the microfluidic devices to re-
produce the hepatic region around blood vessels. Our microfluidic 
device has two microchannels that are separated by two PET 
membranes (Fig. S1A). Because our microfluidic device has two 
PET membranes, cells in the top and bottom channels can be eas-
ily collected separately. The ibd-LoC was developed by culturing 
human hepatocytes and cholangiocytes in the top and bottom 
channels of the device, respectively (Fig. S1B). In contrast, the 
bv-LoC was developed by culturing human hepatocytes and endo-
thelial cells in the top and bottom channels, respectively. 
Immunostaining analysis of albumin (ALB: hepatocyte marker) 
and cytokeratin 19 (CK19; cholangiocyte marker) in the ibd-LoC 
revealed that cholangiocytes form a tubular structure in the bot-
tom channel with a hepatocyte monolayer adjacent to the struc-
ture (Fig. 1A). Immunostaining analysis of ALB and CD31 
(endothelial marker) in the bv-LoC revealed that endothelial cells 
form a tubular structure in the bottom channel, with the hepato-
cyte monolayer adjacent to the structure (Fig. 1B). Note that we 
have confirmed that ibd- and bv-LoCs can be stably cultured for 

at least two weeks (Fig. S1C–F). Next, we examined whether the 
selective transport activity of bile and blood components can be 
reproduced using ibd- and bv-LoCs (Fig. S1G). In the human liver, 
bile or blood components synthesized in hepatocytes are trans-
ported into the bile ducts or blood vessels, respectively. The 
concentration of bile components (bile acids and direct bilirubin) 
in the bottom channel (bile duct channel) of ibd-LoCs was higher 
than that in the bottom channel (blood vessel channel) of bv-LoCs. 
On the other hand, the concentration of blood component (albu-
min) in the bottom channel (blood vessel channel) of bv-LoCs 
was higher than that in the bottom channel (bile duct channel) 
of ibd-LoCs. These results suggest that we succeeded in generat-
ing LoCs with intrahepatic bile duct and blood vessel.

SARS-CoV-2-infected hepatocytes in ibd- and 
bv-LoCs
To elucidate the liver pathophysiology in COVID-19 patients, ibd- 
and bv-LoCs were infected with SARS-CoV-2. Before performing in-
fection experiments using ibd- and bv-LoCs, component cells of 
ibd- and bv-LoCs, including hepatocytes, cholangiocytes, and endo-
thelial cells, were separately infected with SARS-CoV-2 (Figs. S2A 
and B). The SARS-CoV-2 infection efficiency in human hepatocytes 
was higher than that in cholangiocytes. SARS-CoV-2 did not infect 
endothelial cells. Then we examined the gene expression levels of 
two essential host factors for SARS-CoV-2 infection, angiotensin- 
converting enzyme2 (ACE2) and transmembrane serine protease 2 
(TMPRSS2), in the hepatocytes of the ibd- and bv-LoCs and found 
their expression levels in hepatocytes were similar between both 
LoCs (Fig. S2C). Therefore, it is expected that hepatocytes are the 
main target cells of SARS-CoV-2 in ibd- and bv-LoCs.

In this study, medium containing SARS-CoV-2 was infected 
into the top channel of the ibd- and bv-LoCs to investigate the ef-
fects of the virus on the liver (Fig. 1C). At 2 days post-infection 
(dpi), viral RNA was detected in the cell culture supernatant col-
lected from the top channels (Figs. 1D and S3A). On the other 
hand, at 7 and 14 dpi, viral RNA was hardly detected in the cell cul-
ture supernatant collected from the top channels. Viral RNA was 
also detected in the cell culture supernatant collected from the 
bottom channel of bv-LoCs but not of ibd-LoCs (Figs. 1D and 
S3B). This result suggests that SARS-CoV-2 could enter the blood 
vessel channel but not the intrahepatic bile duct channel. 
Immunostaining analysis of SARS-CoV-2 nucleocapsid protein 
(NP) in hepatocytes of ibd-LoCs was performed (Fig. 1E). At 
2 dpi, NP-positive hepatocytes were observed, but hardly at 
6 dpi. These results indicate that SARS-CoV-2 can infect hepato-
cytes in both ibd- and bv-LoCs, but most of the virus is excluded 
at 6 dpi.

Expression levels of IFN-related genes were 
increased in hepatocytes in bv-LoC, but not in 
ibd-LoC, by SARS-CoV-2 infection
RNA-sequencing analysis was performed to analyze the gene ex-
pression profile changes in hepatocytes of ibd- and bv-LoCs in-
duced by SARS-CoV-2 infection. The expression levels of 99 and 
143 genes in hepatocytes of ibd- and bv-LoCs, respectively, were 
significantly up-regulated by SARS-CoV-2 infection (more than 
two-fold) (Fig. S4). Gene Ontology (GO) enrichment analysis of 
these differentially expressed genes showed that GO terms with 
interferon (IFN)-related genes were enriched in hepatocytes of 
ibd- and bv-LoCs by the viral infection (Fig. 2A and B). The fre-
quency of IFN-related terms in hepatocytes of bv-LoCs was higher 
than in hepatocytes of ibd-LoCs. In addition, a gene set 
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Fig. 1. Generation of ibd- and bv-LoCs. (A, B) 3D images of the ibd- and bv-LoCs. Immunostaining analysis of ALB and CK19 in the ibd-LoC (A) and of ALB and 
CD31 in the bv-LoC (B) were performed. Nuclei were counterstained with DAPI. (C) Schematic overview of the SARS-CoV-2 infection experiment using ibd- 
and bv-LoCs. SARS-CoV-2 (0.1 MOI) was injected into the top channel. (D) At 2, 7, and 14 dpi, the viral RNA copy number in the cell culture supernatant was 
measured by quantitative real time-PCR (qPCR). Two-way ANOVA followed by Tukey’s post hoc test (**P < 0.01) (E) At 2 and 6 dpi, immunostaining analysis 
of SARS-CoV-2 NP in hepatocytes of ibd- and bv-LoCs was performed. Nuclei were counterstained with DAPI. Data are representative of three independent 
experiments and are represented as the means ± SD (n = 3, technical replicates).
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enrichment analysis (GSEA) was performed (Fig. 2C and D). 
The hallmark gene sets of IFN α or γ responses were significantly 

enriched by SARS-CoV-2 infection in hepatocytes of bv-LoCs 

(Fig. 2D). The induction of the gene expression levels of IFNA1, 

IFNB1, ISG15, and MxA in hepatocytes of bv-LoCs by SARS-CoV-2 

infection was higher than in hepatocytes of ibd-LoCs (Fig. S5A 

and B). These results indicated that the IFN-related genes were 

strongly induced by SARS-CoV-2 infection in hepatocytes of 

bv-LoCs but not of ibd-LoCs.

Endothelial barrier disruption was occurred in 
bv-LoC by SARS-CoV-2 infection
Next, we examined the epithelial and endothelial barrier function 
after the SARS-CoV-2 infection. The expression levels of several 
cell–cell junction-related genes (claudin-1, occludin, and gap junction 
protein alpha 5 (GJA5)) in cholangiocytes and endothelial cells of 
ibd- and bv-LoCs, respectively, were examined (Fig. 2E and F). 
The expression levels of these genes in endothelial cells were de-
creased by SARS-CoV-2 infection, suggesting that SARS-CoV-2 
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Fig. 2. IFN-related gene expressions and endothelial barrier disruption was induced in bv-LoC by SARS-CoV-2 infection. The ibd- and bv-LoCs were 
infected with 0.1 MOI SARS-CoV-2. (A-D) RNA-seq analysis of mock or SARS-CoV-2-infected hepatocytes in ibd- and bv-LoCs at 4 dpi. (A and B) A GO 
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infection compromises endothelial barrier function. The leakage 
of virus in the blood vessel channel observed in Fig. 1D might be 
due to this endothelial barrier disruption. Then, we examined 
whether the endothelial barrier disruption was caused by the ex-
posure to SARS-CoV-2 or factors released from infected hepato-
cytes. The virus leakage in the bottom channel of bv-LoCs 
cannot be observed in the absence of infected hepatocytes 
(Fig. S5C). These results suggest that the factors released from in-
fected hepatocytes contribute to the vascular endothelial barrier 
disruption in bv-LoC.

Liver dysfunctions were caused in hepatocytes of 
bv-LoCs by SARS-CoV-2 infection
It remains unclear whether the liver dysfunctions observed in 
COVID-19 patients are caused by direct effects of SARS-CoV-2 in-
fection or indirect effects mediated by cytokines produced from 
other organs. Therefore, we investigated the liver pathophysi-
ology in COVID-19 patients using ibd- and bv-LoCs.

After SARS-CoV-2 infection, the amount of lactate dehydrogen-
ase (LDH), which was released from damaged cells, in ibd- and 
bv-LoCs was evaluated (Figs. 3A and S6A). LDH release in 
bv-LoCs was increased by SARS-CoV-2 infection at 2, 4, 8, and 
14 dpi. The LDH release in ibd-LoCs was moderately increased 
by SARS-CoV-2 infection at 2, 4, 8, and 14 dpi. Next, lipid droplets 
in hepatocytes of ibd- and bv-LoCs were stained using Oil Red O 
(Fig. 3B) and BODIPY 493/503 (Fig. 3C). At 14 dpi, lipid droplets 
were accumulated in the hepatocytes of SARS-CoV-2-infected 
bv-LoCs. Then, the gene expression levels of liver fibrosis markers 
were evaluated (Fig. 3D). At 14 dpi, the gene expression levels of 
the fibrosis markers COL1A1 and TIMP1 in the hepatocytes of 
SARS-CoV-2-infected bv-LoCs were significantly increased. We 
also compared the liver damage using three SARS-CoV-2 strains 
(B.1.1.214, B.1.617.2, and B.1.1.529), and found that liver damage 
was moderate in SARS-CoV-2 B.1.1.529 (Omicron)-infected 
bv-LoC, compared with the other variant-infected bv-LoCs 
(Fig. S6B–D). Taken together, these results suggest that 
SARS-CoV-2 infection directly causes liver dysfunctions.

RDV and MPV treatment suppressed SARS-CoV-2 
replication but did not reduce liver damage
Remdesivir (RDV) and molnupiravir (MPV) are approved COVID-19 
drugs (10–13). Both inhibit viral RNA-dependent RNA polymerase 
activity. Here, we examined whether RDV or MPV treatment could 
inhibit viral infection and recover liver function using bv-LoCs. 
First, we examined whether our device is suitable for analyzing 
RDV and MPV. Our device is made of an elastomer, polydimethyl-
siloxane (PDMS). PDMS easily absorbs some small hydrophobic 
molecules, but we previously found that compounds with 
low S + log D values, like RDV and MPV, are hardly absorbed 
(Fig. S7A) (7). We injected the medium containing RDV or MPV 
into the top and bottom channels of the PDMS-based device and 
evaluated the concentration of the drugs at 1, 2, and 4 h after the 
injection (Fig. S7B). As expected, RDV and MPV were not absorbed 
into the PDMS-based device. We also evaluated the hepatotoxicity 
of RDV and MPV (Fig. S8A). Because 2 μM RDV or 10 μM MPV treat-
ment did not show a cytotoxic effect on hepatocytes, we performed 
the following infection experiments under these concentrations.

The anti-viral effects of RDV and MPV were examined using 
bv-LoCs. After SARS-CoV-2 infection, RDV- or MPV-containing 
medium was injected into the top channel of bv-LoCs at 2–5 dpi 
(Fig. S8B). A viral genome was detected in the supernatant of 
bv-LoCs before the drug treatment (2 dpi, Fig. S8C), but it was 

hardly detected afterward (4 or 8 dpi, Fig. S8D). To examine 
whether the viral infection-mediated cell toxicity can be reduced 
by RDV or MPV treatment, the amount of LDH was evaluated 
(Fig. S8E and F). Interestingly, the amount of LDH released in the 
supernatant was not reduced by the treatment (Fig. S8F). These re-
sults suggest that RDV or MPV treatment can inhibit SARS-CoV-2 
infection but not the viral infection-mediated cell toxicity.

The combination of RDV and BARI suppressed 
both SARS-CoV-2 replication and liver damage
In a recent clinical report, the combination of RDV and baricitinib 
(BARI) was superior to RDV alone at accelerating the improved 
clinical status of COVID-19 patients (14). BARI is a selective inhibi-
tor of Janus kinase (JAK) 1 and 2, and BARI treatment suppresses 
interleukin-6 or IFN-γ secretion in COVID-19 patients (15). 
Therefore, we investigated the therapeutic effects of RDV and 
BARI using bv-LoCs.

First, we examined whether the PDMS-based device is suitable 
for analyzing BARI. Again, the S + log D value of BARI is low 
(Fig. S7A). We injected the medium containing BARI into the top 
and bottom channels of the PDMS-based device and evaluated 
the concentration of BARI at 1, 2, and 4 h after the drug injection. 
As expected, BARI was not absorbed into the PDMS-based device 
(Fig. S7B). Then we examined the hepatotoxicity of BARI (Fig. S9A). 
Because 1 μM BARI alone or the combination of 2 μM RDV and 1 μM 
BARI did not show a cytotoxic effect on hepatocytes, we performed 
the following infection experiments under this concentration.

After the SARS-CoV-2 infection, medium containing RDV alone 
or RDV and BARI was injected into the top channel of bv-LoCs at 
2–4 dpi (Fig. 3E). Medium containing BARI alone was added at 
4–9 dpi. As above, the viral genome was detected in the super-
natant of bv-LoCs before the drug treatment (2 dpi, Fig. S9B) but 
hardly afterward (4 and 8 dpi, Fig. S9C). To examine whether the 
viral infection-mediated cell toxicity can be reduced by RDV and 
BARI treatment, the amount of LDH was evaluated (Figs. 3F, S9D 
and E). Importantly, the amount of LDH in infected bv-LoCs was 
decreased by RDV and BARI treatment but not by RDV alone treat-
ment (Figs. 3F and S9E). Consistently, Oil Red O staining showed 
that the accumulation of lipid droplets in hepatocytes of infected 
bv-LoCs was reduced by RDV and BARI treatment (Fig. 3G). These 
results suggest that the combination of RDV and BARI inhibits 
SARS-CoV-2 infection and recovers liver function.

Comparison of data from LoCs and clinical data of 
COVID-19 patients
Finally, the blood test data and serum viral genome copy number 
in COVID-19 patients were compared with the LoC results. Our in 
vitro data detected hepatic dysfunctions in bv-LoCs but no hepa-
tobiliary damage in ibd-LoCs. Thus, the serum values of hepatic 
dysfunction markers (AST and ALT) and hepatobiliary disease 
markers (alkaline phosphatase (ALP) and total bilirubin (T-BIL)) 
in mild, moderate, and severe COVID-19 patients (without active 
liver disease) were examined (Figs. 4A, S10A and B). The gray areas 
represent the reference range for normal values. We calculated 
the average values of each marker within 14 days after the onset 
and compared them with normal values (Fig. 4B). The AST and 
ALT values were elevated in severe COVID-19 patients, as com-
pared with those in mild COVID-19 patients (Fig. S10A). The prob-
abilities of elevated AST or ALT in severe COVID-19 patients were 
higher than those in mild COVID-19 patients (AST: odds ratio = 27, 
95% confidence intervals (CI) = 1.04–698.83; ALT: odds ratio = 12, 
95% CI = 0.80–180.98) (Fig. 4B). On the other hand, the probabilities 
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of abnormal ALP and T-BIL in mild and severe COVID-19 patients 
were similar to each other. These results suggest that hepatic dys-
function but not hepatobiliary disease was induced in severe 
COVID-19 patients. The findings from the clinical samples analysis 
are consistent with the phenomena observed in our in vitro data.

Because our in vitro analysis demonstrated that SARS-CoV-2 
breached the endothelial barrier and leaked into the blood vessel 
channel, we examined whether viral RNA is in the sera of 
COVID-19 patients. Although viral RNA was not detected in serum 
collected more than 7 days after the onset, it was detected in some 
sera (10 patients/15 patients) collected within 7 days after the on-
set (Table S1). We calculated the average AST or ALT values in 15 
patients. Interestingly, the probabilities of elevated AST or ALT in 
COVID-19 patients who were positive for serum viral RNA were 
higher than those in COVID-19 patients who were negative for se-
rum viral RNA (AST: odds ratio = 16, 95% CI = 1.09–234.26; ALT: 
odds ratio = 8, 95% CI = 0.60–106.94) (Fig. 4C). Additionally, the 
probability of serum virus-positive in severe COVID-19 patients 
was higher than in mild and moderate COVID-19 patients (odds 
ratio = 23.57; 95% CI = 1.00–556.11). Thus, we propose that 
COVID-19 patients in whom serum virus is detected within 7 days 
of onset are likely to become severe and develop liver damage.

Discussion
SARS-CoV-2 infection caused endothelial barrier dysfunction only 
in bv-LoCs. Additionally, liver dysfunctions were observed in 
bv-LoCs but not in ibd-LoCs. The reason for the different results 
between the two LoC models could be the properties of their hep-
atocytes. We also evaluated the therapeutic effects of several 
COVID-19 drugs using bv-LoCs and found that the combination of 
RDV and BARI was effective at recovering hepatic functions in in-
fected bv-LoCs, suggesting a combination of anti-viral drugs and 
immunoregulating drugs is effective at treating organ dysfunctions 
in COVID-19 patients. Future experiments using organs-on-a-chip 
models of other organs are needed to test this hypothesis.

In SARS-CoV-2-infected bv-LoCs, endothelial barrier function was 
decreased. Such endothelial barrier disruption was also reported in 
SARS-CoV-2-infected airway-, lung- and gut-on-a-chip (9, 16, 17). 
However, since the mechanism of endothelial barrier damage may 
differ depending on the organ type, analysis using individual organ 
models will be essential. It is also reported that endothelial dysfunc-
tions can be caused by cytokines induced by the infecting virus, such 
as SARS-CoV-2, influenza virus, and lymphocytic choriomeningitis 
virus (18, 19). To perform a more accurate investigation of endothelial 
barrier disruption by cytokines, it is essential to develop a model that 
includes immune cells that produce cytokines in response to viral in-
fection. Although the bv- and ibd-LoCs we developed do not contain 
immune cells, we should be able to build models that accurately re-
flect in vivo conditions by using immune cells in the future.

Besides the disadvantage that our bv- and ibd-LoCs do not con-
tain immune cells, these models have another important limita-
tion. Because we generated bv-LoCs and ibd-LoCs using separate 
microfluidic devices, we cannot accurately reproduce liver zon-
ation. In vivo hepatocyte functions are known to be heteroge-
neous depending on their zonality. To recapitulate the liver 
zonation using LoCs, it is required to generate LoCs which culture 
hepatocytes, cholangiocytes, and endothelial cells in the same mi-
crofluidic device. Additionally, if we obtain culturable endothelial 
cells of the portal vein, central vein, and hepatic artery, it would be 
possible to recapitulate the zonal heterogeneity in more detail.

In addition to liver dysfunction, dysfunctions in other organs 
are observed in COVID-19 patients. By using organs-on-a-chip 

technology, we can connect multiple organ models (20, 21). For ex-
ample, by connecting LoC and lung-on-a-chip, we can analyze the 
liver dysfunction caused by cytokines produced from the infected 
lung. Overall, organs-on-a-chip technology could help analyze the 
whole-body response in COVID-19 patients.

In this study, we used a clinical approach in addition to a LoC 
technology to elucidate the liver pathophysiology of COVID-19 
patients. In vitro experiments using LoCs suggested that SARS- 
CoV-2 infection causes hepatic dysfunctions rather than hepato-
biliary damage. This result was supported by a blood test in 
COVID-19 patients. The same in vitro experiments also suggested 
that SARS-CoV-2 invades blood vessels where the hepatocellular in-
jury occurs. This observation was supported by quantifying the viral 
copy number in the sera of COVID-19 patients. Therefore, by combin-
ing LoC technology and a clinical approach, we demonstrated that the 
liver pathophysiology of COVID-19 patients could be clarified in detail.

Materials and methods
Cell culture
Before seeding cholangiocytes or endothelial cells, a bottom chan-
nel of the PDMS device was pre-coated with fibronectin (1 μg/mL, 
Sigma-Aldrich). Cholangiocytes (HuCCT1 cells, JCRB0425, JCRB 
Cell Bank) or endothelial cells (Human Umbilical Vein Endothelial 
Cells: HUVECs, Lonza) were suspended at 5 × 106 cells/mL in 
RPMI-1640 medium containing 1×GlutaMAX (Thermo Fisher 
Scientific) and 10% fetal bovine serum (FBS) or EGM-2 Endothelial 
Cell Growth Medium-2 BulletKit (Lonza), respectively. Ten μL sus-
pension medium was injected into the fibronectin-coated bottom 
channel. Then, the device was turned upside down and incubated 
for 1 h. After the incubation, the device was turned over, and the 
medium was injected into the bottom channel.

After 4 days, human hepatocytes (HUCPI, Lonza) were seeded 
into the top channel. Before seeding hepatocytes, the PDMS devi-
ces were pre-coated with Collagen I solution (30 μg/mL, Corning). 
The vials of human hepatocytes were rapidly thawed in a shaking 
water bath at 37°C. The contents of each vial were emptied into 
pre-warmed Cryopreserved Hepatocyte Recovery Medium (Thermo 
Fisher Scientific), and the suspension was centrifuged at 1,200 rpm 
for 5 min at room temperature. Hepatocytes were suspended at 
5 × 106 cells/mL in Hepatocyte Culture Medium BulletKit (HCM, 
Lonza) containing 10% FBS. Ten μL suspension medium was in-
jected into a Collagen Type I (Corning)-coated PDMS device. After 
1 h, the medium was added into the top and bottom channels.

Quantitative real time-PCR
ISOGEN (NIPPON GENE) was used to isolate total RNA from the 
cells. A Superscript VILO cDNA Synthesis Kit (Thermo Fisher 
Scientific) was used to synthesize cDNA from the isolated total 
RNA. Quantitative real time-PCR (qPCR) was performed with 
SYBR Green PCR Master Mix (Thermo Fisher Scientific) using a 
StepOnePlus qPCR system (Thermo Fisher Scientific). The 2−ΔΔCT 

method was adopted for the relative quantitation of the target 
mRNA levels. The values of the target genes were normalized by 
those of the housekeeping gene, glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH). The PCR primer sequences are summarized in Table S2.

Immunostaining analysis
The ibd- and bv-LoCs were fixed with 4% paraformaldehyde in PBS 
for 15 min. After blocking the cells with PBS containing 10% FBS, 
1% bovine serum albumin, and 0.2% Triton X-100 at room tem-
perature for 45 min, the cells were incubated with a primary 
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antibody at room temperature for 2 h and then with a secondary 
antibody at room temperature for 1 h. All antibodies used in this 
study are described in Table S3.

RDV, MPV, and BARI absorption into the PDMS 
device
Medium containing 10 μM of RDV, MPV, or BARI was injected into 
the PDMS device (200 μL medium/channel). Half of the medium 
was collected at 1, 2, or 4 h after the drug treatment. When collect-
ing the supernatant, the same amount of culture medium con-
taining the substrate was added. The collected supernatant was 
mixed with the same volume of acetonitrile. Samples were fil-
trated with Cosmonice Filter W of a pore size of 0.45 µm and 
then analyzed by HPLC to measure the concentration of RDV, 
MPV, or BARI according to a standard curve. HPLC analysis was 
performed using a LO-20AD SPD + RF (DGU-20A, LC-20AD, 
RF-20A xs, SIL-20AC, CBM-20A, SPD-20A, CTO-20AC; Shimadzu). 
The HPLC methods are summarized in Table S4.
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