129 research outputs found

    Long-duration nano-second single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures

    Get PDF
    AbstractThe influence of laser pulse duration on the spectral emissions observed from bulk ionic solutions has been investigated for hydrostatic pressures between 0.1 and 30MPa. Transient pressure, shadowgraph imaging and spectroscopic measurements were performed for single pulses of duration 20 and 150ns. The transient pressure measurements show that for hydrostatic pressures up to 30MPa, propagation of the high-pressure shockwave generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure are larger, with the latter lasting longer for the 150ns pulse compared to a 20ns pulse of the same energy. The 150ns pulse generates larger cavities with significant enhancement of the spectral emissions observed compared to the 20ns duration pulse for pressures up to 30MPa. The results demonstrate that laser-induced breakdown using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30MPa

    Environmental changes in Syowa Station area of Antarctica during the last 2300 years inferred from organic components in lake sediment cores

    Get PDF
    rganic components in sediment cores from Namazu Ike(lake)(length 40cm) and O-ike(lake)(length 32cm) from Syowa Station area, Antarctica were studied to clarify their features in relation to paleoenvironmental changes, together with carbon-14 dating by Tandetron accelerator mass spectrometry. Namazu Ike sediment core was mainly composed of algal(mainly cyanobacteria) and aquatic moss debris, whereas O-ike sediment core was comprised of coarse and fine sands with the influence of algal(mainly cyanobacteria) debris. The ages of core bottoms of Namazu Ike and O-ike were estimated to be 1550 and 2330 years before present(yBP), respectively. The sedimentation rates of Namazu Ike and O-ike were calculated to be 30 and 59 years/cm, respectively. Very high total organic carbon(TOC) contents(average 24.5%) of Namazu Ike revealed that the sediment core was mainly composed of organic matter. Dramatic increase of TOC/total nitrogen ratios at a depth of 25cm in Namazu Ike strongly suggests that aquatic moss increased from 1100yBP to the core top. Changes in n-alkanes, n-alkanoic and n-alkenoic acids, and sterol compositions in the O-ike sediment core, suggest that microbial composition changed considerably, but their source organisms are not clear and further studies are required

    Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis

    Get PDF
    Spectroscopy is emerging as a technique that can expand the envelope of modern oceanographic sensors. The selectivity of spectroscopic techniques enables a single instrument to measure multiple components of the marine environment and can form the basis for versatile tools to perform in situ geochemical analysis. We have developed a deep-sea laser-induced breakdown spectrometer (ChemiCam) and successfully deployed the instrument from a remotely operated vehicle (ROV) to perform in situ multi-element analysis of both seawater and mineral deposits at depths of over 1000 m. The instrument consists of a long-nanosecond duration pulse-laser, a spectrometer and a high-speed camera. Power supply, instrument control and signal telemetry are provided through a ROV tether. The instrument has two modes of operation. In the first mode, the laser is focused directly into seawater and spectroscopic measurements of seawater composition are performed. In the second mode, a fiber-optic cable assembly is used to make spectroscopic measurements of mineral deposits. In this mode the laser is fired through a 4 m long fiber-optic cable and is focused onto the target’s surface using an optical head and a linear stage that can be held by a ROV manipulator. In this paper, we describe the instrument and the methods developed to process its measurements. Exemplary measurements of both seawater and mineral deposits made during deployments of the device at an active hydrothermal vent field in the Okinawa trough are presented. Through integration with platforms such as underwater vehicles, drilling systems and subsea observatories, it is hoped that this technology can contribute to more efficient scientific surveys of the deep-sea environment

    Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity

    Get PDF
    INTRODUCTION: Loss of histone H4 lysine 20 trimethylation (H4K20me3) is associated with multiple cancers, but its role in breast tumors is unclear. In addition, the pathological effects of global reduction in H4K20me3 remain mostly unknown. Therefore, a major goal of this study was to elucidate the global H4K20me3 level in breast cancer tissue and investigate its pathological functions. METHODS: Levels of H4K20me3 and an associated histone modification, H3 lysine 9 trimethylation (H3K9me3), were evaluated by immunohistochemistry in a series of breast cancer tissues. Univariate and multivariate clinicopathological and survival analyses were performed. We also examined the effect of overexpression or knockdown of the histone H4K20 methyltransferases, SUV420H1 and SUV420H2, on cancer-cell invasion activity in vitro. RESULTS: H4K20me3, but not H3K9me3, was clearly reduced in breast cancer tissue. A reduced level of H4K20me3 was correlated with several aspects of clinicopathological status, including luminal subtypes, but not with HER2 expression. Multivariate analysis showed that reduced levels of H4K20me3 independently associated with lower disease-free survival. Moreover, ectopic expression of SUV420H1 and SUV420H2 in breast cancer cells suppressed cell invasiveness, whereas knockdown of SUV420H2 activated normal mammary epithelial-cell invasion in vitro. CONCLUSIONS: H4K20me3 was reduced in cancerous regions of breast-tumor tissue, as in other types of tumor. Reduced H4K20me3 level can be used as an independent marker of poor prognosis in breast cancer patients. Most importantly, this study suggests that a reduced level of H4K20me3 increases the invasiveness of breast cancer cells in a HER2-independent manner

    Degradation rate of DNA scaffolds and bone regeneration.

    Get PDF
    Scaffolds implanted into bone defect sites must achieve optimal biodegradation rates while appropriately filling the void as new bone formation progresses. We recently developed a unique biomaterial consisting of salmon deoxyribose nucleic acid (DNA) and protamine, which can be used as an osteoconductive scaffold for tissue engineering. The aim of the present study was to elucidate how the degradation rate of the scaffold affects bone regeneration. We examined the relationships between the degradation rate of salmon DNA scaffolds and new bone formation using a rat skin flank subcutaneous model and rat calvarial defect model. The degradation rates of the scaffolds were proportional to the durations of pretreatment with ultraviolet (UV) light irradiation. The biodegradation rates of the scaffolds were also dependent on the duration of UV irradiation, as tested a subcutaneous tissue implantation. Scaffolds irradiated with UV light for 0.5 h maintained gradual biodegradation of phosphate compared with scaffolds irradiated for 0 or 3 h. In the calvarial defect model, we found that new bone formation was higher in rats treated with scaffolds irradiated with UV light for 0.5 h compared with those irradiated with UV light for 0 or 3.0 h. The present results suggest that bioengineering of scaffolds for biodegradation is important to regenerate bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018.福岡歯科大学2017年

    HER2 G776S mutation promotes oncogenic potential in colorectal cancer cells when accompanied by loss of APC function

    Get PDF
    Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS-GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target
    corecore