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The influence of laser pulse duration on the spectral emissions observed frombulk ionic solutions has been inves-
tigated for hydrostatic pressures between 0.1 and 30 MPa. Transient pressure, shadowgraph imaging and spec-
troscopic measurements were performed for single pulses of duration 20 and 150 ns. The transient pressure
measurements show that for hydrostatic pressures up to 30 MPa, propagation of the high-pressure shockwave
generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame
that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure
are larger, with the latter lasting longer for the 150 ns pulse compared to a 20 ns pulse of the same energy.
The 150 ns pulse generates larger cavities with significant enhancement of the spectral emissions observed com-
pared to the 20 ns duration pulse for pressures up to 30MPa. The results demonstrate that laser-induced break-
down using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the
analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30 MPa.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a form of atomic
emission spectroscopy that uses a focused laser pulse to create a
plume of excited material that emits light of wavelengths correspond-
ing to the atoms and ions that compose the plume. While most studies
concerning underwater LIBS use a double pulse technique [1,2], it has
been reported that this method is sensitive to external pressure [3–5],
and it has been demonstrated that no enhancement in line emission is
observed compared with measurements using a single pulse at pres-
sures of more than 10 and 14.6 MPa for bulk solutions and immersed
solids, respectively [3,4]. On the other hand, it has been shown that
well resolved emission spectra can be observed at pressures up to
30 MPa after excitation by a single laser pulse of duration b10 ns, with
no significant effect of pressure on the analytical value of the line emis-
sions seen for both bulk ionic solutions [6] and immersed solids [7], re-
spectively. In ref. [8] it was suggested that this may be related to the
influence of the transient pressure impulse generated when a high
power laser pulse is focused in a nearly incompressible medium during
the period that spectroscopic measurement is made after a single pulse.

The benefits of long pulse LIBS for underwater spectroscopy were
first reported by Sakka et al. [9] who demonstrated an improvement
. This is an open access article under
in the quality of the signal observed from an immersed metallic target
by increasing the duration of the pulse used for ablation to 150 ns. It
was further demonstrated by the same group that hydrostatic pressures
up to 30MPa have no significant influence on the spectra observed from
an immersedmetallic target when using a single 150 ns pulse [10]. Here
we demonstrate for thefirst time, that a long-duration pulse is also ben-
eficial for the analysis of bulk ionic solutions at pressures of up to
30 MPa.

The underlying mechanisms of laser-induced breakdown in bulk
fluids arewell described in literature [11–15].When a laser pulse of suf-
ficient intensity is focused in a bulk fluid, breakdown can be initiated ei-
ther through direct ionization of the medium by multiphoton
absorption, or cascade ionization at impurities. Once initiated, the ener-
gy of the laser is strongly absorbed by the excited plume of material
through inverse bremsstrahlung absorption of photons [12]. This rapid-
ly heats the plume to temperatures N5000 K [16], producing visible
emissions and local pressures in the order of tens of GPa [12]. The
high temperatures and pressures result in rapid expansion of the
plume, resulting in high-pressure shockwaves and cavitation effects.
As the cavities expand due to the high temperatures and pressures,
the pressure inside the cavity reduces to the saturated vapor pressure
(2.33 kPa in water at 293 K), which is smaller than the ambient level
(0.1MPa at atmospheric pressure) [17]. The resulting pressure gradient
causes the cavity to contract, increasing the pressure inside the cavity
until it eventually collapses. While the underlying mechanisms of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 2. Measured shape and duration of pulses used in this work. The vertical axis on the
left shows the peak normalized intensity of the 20 ns pulse, and the axis on the right
shows the corresponding intensity of the 150 ns pulse.
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laser-induced breakdown are well documented, the influence of elevat-
ed hydrostatic pressures on thesemechanisms, and specifically the sub-
sequent effects on the spectral emissions that can be observed from the
excited plume are not well understood. In this study, we measure the
transient pressure profiles after irradiation of a single pulse in a bulk
ionic solution at hydrostatic pressures between 0.1 and 30MPa. The re-
sults demonstrate that the expanding shockwave generated by the fo-
cused laser pulse reduces the local pressure near the focal point of the
laser to below ambient levels during the period that spectroscopic emis-
sions can be observed for hydrostatic pressures up to 30 MPa. Further-
more, the results of shadowgraph imaging and measurement of the
transient pressure profiles show that a 150 ns duration pulse has a
stronger influence on the local pressure and produces a larger cavity
than a more conventional 20 ns duration pulse of the same energy dur-
ing the time frame that spectroscopic measurements can be made.
While analytically useful information can be obtained for solutions at
high-pressure using a conventional single pulse technique [6], it is
shown that the use of a long-duration pulse yields significant enhance-
ments in the quality of the spectra observed.

2. Materials and methods

Experiments are performed on bulk ionic solutions that contain
410 ppm Ca and 370 ppm K at pressures of up to 30 MPa using the
setup shown in Fig. 1. The concentrations of Ca and K were chosen to
match typical values of seawater. The pressure chamber consists of a
stainless steel cylinder with three sealed fused silica windows and two
electrical penetrators. These allow for simultaneous spectroscopy, tran-
sient pressure measurements and shadowgraph imaging of laser-
induced plumes at hydrostatic pressures of up to 30 MPa. A modified
1064 nm Nd:YAG Q-switched laser, described previously in ref. [9], is
used to deliver a single 25 mJ pulse of 20 or 150 ns duration, where
Fig. 2 shows the temporal profiles of the pulses used in this work.
These are focused into the bulk solution via a high-pressure objective
lens of 10× magnification, where the distance between the back of
the focusing lens and the focal point of the laser is 9 mm in water. Mea-
surements of the transient pressure profiles are performed using a hy-
drophone (Müller Instruments Müller-Platte Needle Probe) that is
sensitive up to 20 MHz and is placed 1 mm from the focal point of the
laser. Dimensionally calibrated shadowgraph images are recorded
using an intensified charge coupled device (ICCD) as a detector
(Princeton Instruments PiMAX3 1024i Unigen II) together with an ob-
jective lens that has a working distance of 46.2 mm in air at 6× magni-
fication (Union optics DZ4-T ZC15). A flash lamp is used to back
illuminate the shadowgraphs and gated images are taken at various de-
lays from the laser pulse. Spectroscopic measurements are performed
by observing the plumes along the same path used for laser delivery.
Window

Bundle fiber

Dichroic mirror

Pressure sensor

1064 nm notch filter
Water

Pressure chamber

Pump
0.1~30 MPa

ICCD camera
Flash 
lamp

Spectrograph
ICCD camera25mJ, 20ns or 150ns

1064nmNd:YAG

Fig. 1. Experimental setup for investigation of plumes generated in bulk ionic solutions at
pressures of up to 30 MPa.
The emitted light is passed through a 150mm focal length spectrograph
with a light throughput of f/4 (Acton Research Spectra Pro 2150), and is
recorded using an ICCD (Princeton Instruments PiMAX3 1024i Unigen
II). A 1200 groove/mm grating and a 50 μm wide entrance slit are
used during the experiments.

3. Results

Fig. 3 shows the transient pressures recorded over 8 μs for plumes
generated using single 20 and 150 ns duration pulses at 0.1, 10, 20,
and 30 MPa, respectively, where time is measured from when the first
peak reaches its maximum value. The graphs show the average of 10
profiles measured at each condition. Table 1 summarizes the magni-
tudes of the first and second peaks, corresponding to the initial laser-
induced shockwave and the collapse of the cavity, and the reduction
in pressure below ambient levels that occurs between these two
peaks. The times atwhich theminimumpressure between the peaks oc-
curs, and the time of the second peak are included togetherwith the pe-
riod that the pressure is reduced below ambient levels between the first
two peaks. The uncertainty range given is the standard deviation of 10
measurementsmade at each condition.While it is not possible to deter-
mine the absolute magnitudes of the pressures involved, it can be seen
that the size of the initial shockwave (1st peak) is 33 ± 13% larger for
the longer duration pulse despite the peak power being significantly
lower than for the shorter pulse. For the experiments at high hydrostatic
pressures, it can be seen that as the shockwave expands outwards, it
leaves behind a region in which the pressure is locally reduced to
below the ambient levels of the surroundings. The reduction in pressure
is more pronounced at higher pressures, increasing from−3.0 ± 0.4 to
−5.7 ± 0.5 mV, and from −3.6 ± 0.1 to −6.2 ± 0.5 mV between 10
and 30 MPa for the 20 and 150 ns pulses, respectively. From the values
in the table, it can be determined that the average reduction in pressure
for themeasurements between 10 and 30MPa is 17 ± 7% larger for the
150 ns pulse than the 20 ns pulse. Similarly, the duration that the pres-
sure is reduced to below ambient levels is 23 ± 10% longer for the
150 ns pulse for hydrostatic pressures between 10 and 30 MPa.

Fig. 4 shows shadowgraph images observed for the different dura-
tion laser pulses at pressures of 0.1 and 30 MPa, respectively, where
the pulse is focused from the left of each frame. The images are obtained
at various delays after laser irradiation, noted in the top right of each
frame, and all images are recorded with a gate width of 10 ns. Visible
emission occurs immediately following laser irradiation for all condi-
tions. For the 20 ns pulse, several small cavities are generated at differ-
ent locations along the path of the laser, with expanding spherical



"!1.
'&!1.

"!1.
'&!1.

"!1.
'&!1.

"!1.
'&!1.

20 ns pulse

150 ns pulse
20 ns pulse

150 ns pulse

20 ns pulse
150 ns pulse

20 ns pulse
150 ns pulse

dy
na

m
ic

 p
re

ss
ur

e 
si

gn
al

, m
V

dy
na

m
ic

 p
re

ss
ur

e 
si

gn
al

, m
V

dy
na

m
ic

 p
re

ss
ur

e 
si

gn
al

, m
V

dy
na

m
ic

 p
re

ss
ur

e 
si

gn
al

, m
V

0.1 MPa 10 MPa

20 MPa 30 MPa

20

15

10

5

0

-5

20

15

10

5

0

-5

0 2 4 6 8
time, µ s

0 2 4 6 8
time, µ s

20

15

10

5

0

-5

20

15

10

5

0

-5

0 2 4 6 8
time, µ s

0 2 4 6 8
time, µ s

a) b)

c) d)

Fig. 3. Transient pressure profilesmeasured 1mm from the focal point of single 20 and 150 ns laser pulses in a bulk ionic solution at ambient pressures of (a) 0.1, (b) 10, (c) 20, and (d) 30MPa.
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shockwaves superimposing to form a complicated interference pattern.
For the long pulse, the structure of the cavities and shockwaves ob-
served is simpler, with just two merged cavities being formed. Since
breakdown occurs when the power intensity is larger than the thresh-
old required to produce free electrons [12], the high intensity near the
beamwaist of the 20 ns pulse results in breakdown occurring at multi-
ple sites along the focal axis of the laser [13,15]. For the long pulse,
breakdown is confined to a smaller region near the focal point of the
laser due to the lower intensities. Once the initial free electrons are pro-
duced, laser photons are strongly absorbed through inverse brems-
strahlung absorption [10], with cascade ionization occurring at much
Table 1
Transient pressuremeasurements recorded at 0.1, 10, 20, and 30 MPa following irradiation of a
the uncertainty range is the standard deviation of 10 measurements made at each condition.

Hydrostatic pressure Pulse duration 1st peak Minimum

MPa ns mV mV

0.1 20 12.4 ± 0.6 –

150 14.0 ± 0.5 –

10 20 13.2 ± 0.5 −3.0 ± 0.4
150 18.5 ± 0.6 −3.6 ± 0.1

20 20 13.1 ± 0.7 −4.5 ± 0.4
150 18.3 ± 0.8 −5.5 ± 0.3

30 20 12.2 ± 0.9 −5.7 ± 0.5
150 16.7 ± 1.4 −6.2 ± 0.5
lower intensity thresholds. For this reason, the energy of the laser is
mostly absorbedby the cavity nearest to the laser [10], as seen in the im-
ages where optical emissions are confined to the foremost cavity for
both 20 and 150 ns laser pulses at both pressure conditions. The higher
transient pressures recorded and more intense optical emissions
indicate that the initiated plume absorbs a larger proportion of the
laser energy for the 150 ns pulse than the 20 ns pulse. This is in agree-
mentwith previous reports that a greater proportion of the laser energy
is coupled to the plume for longer pulses due to an increased shielding
effect [13,16]. Another noticeable difference is that optical emissions
are significantly more intense for the longer duration pulse in the
single 20 ns and 150 ns pulse. The values shown are the average of 10measurements and

Reduced pressure 2nd peak

μs μs mV μs

– – – –

– – – –

2.3 ± 0.1 4.1 ± 0.1 8.8 ± 0.5 5.2 ± 0.1
2.4 ± 0.1 5.0 ± 0.2 10.2 ± 1.0 6.2 ± 0.1
1.2 ± 0.1 2.3 ± 0.1 9.1 ± 1.0 3.1 ± 0.1
1.4 ± 0.3 2.6 ± 0.1 11.4 ± 1.1 3.7 ± 0.2
0.6 ± 0.1 1.5 ± 0.1 7.5 ± 0.8 2.2 ± 0.1
1.0 ± 0.3 2.0 ± 0.1 8.7 ± 2.1 2.7 ± 0.2



a)

b)

Fig. 4. Shadowgraph images of plumes generated in liquids at 0.1 and 30MPa (a) using a 20 ns pulse, and (b) using a 150 ns pulse. The number at the top right of each image is the delay
from the laser pulse. Each image was taken with a gate width of 10 ns.
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images taken at 0.4 μs compared to the corresponding images taken for
the 20 ns pulse. The fact that a longer pulse results in a longer period of
visible emission is also reported in ref [13], where the luminescence for
a 6 ns pulse was reported to last just 15 ns, whereas the optical emis-
sions following a 76 ns pulse lasted for more than 200 ns. At this
point, the size of the cavities is similar for both 0.1 and 30MPa pressure
conditions for the respective pulse lengths. However, in the images
taken at 1 μs and 2 μs the sizes of the cavities diverge at different pres-
sures. Fig. 5 shows the volumes of the cavities calculated from
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Fig. 5. Volume of cavity generated after irradiation of a 20 and a 150 ns single pulse in a
bulk liquid at 0.1, 10, 20 and 30 MPa.
shadowgraph images during the first 2 μs after irradiation with the 20
and 150 ns pulses at 0.1, 10, 20, and 30 MPa, respectively. The volumes
are calculated by rotating the cross section of the cavities about the cen-
tral axis, where in the case ofmultiple cavities the sumof the volumes is
used. The values shown are averaged over 10 measurements for each
condition. The dotted line is a spline fit included for clarity of presenta-
tion. Even though both pulses have the same total energy, the cavities
formed by the long pulse are larger and have longer lifetimes than
those formed by the shorter pulse. Although the maximum size of the
cavities and their lifetimes are strongly dependent on the hydrostatic
pressure of the surrounding fluid [18], it can be seen that the volume
of the cavities are similar during the first 0.4 μs after irradiation, indicat-
ing that transient pressure impulse due to the focused laser plays amore
dominant role in determining characteristics of the cavity than hydro-
static pressures up to 30 MPa during this time frame.

Fig. 6 shows the emission spectra observed for a solution containing
410 ppm Ca and 370 ppm K using a 20 ns pulse (Fig. 6(a, c)) and a
150 ns pulse (Fig. 6(b, d)) at 0.1, 10, 20 and 30 MPa, respectively. The
spectra shown are averaged over 10 measurements at each condition.
All measurements are performed with a gate delay of 0.4 μs and a gate
width of 0.5 μs to allow for comparisons between the measurements.
A 0.4 μs gate delay was found to be optimal for both 20 and 150 ns
pulses.Measurementsmadewith a smaller delay are affected by the ini-
tial continuum due to free-fixed transitions. A longer gate width results
in a larger accumulated signal for measurements at low pressure, but is
affected by sono-luminescence [19] that occurs when the first cavity
collapses at high hydrostatic pressures. A longer gate delay was not
used for the same reason. The lines of Ca II at 393 nm 2P3/2 → 2S1/2,
397 nm 2P1/2 → 2S1/2, and Ca I at 423 nm 1P1 → 1S0 can be seen in
Fig. 6(a) and (b), and the lines of K I at 766 nm 2P3/2 → 2S1/2 and
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Fig. 6. Spectroscopic measurements of ionic solutions containing 410 ppm Ca measured using (a) a 20 ns pulse, and (b) a 150 ns pulse, and 370 ppm K using (c) a 20 ns pulse, and (d) a
150 ns pulse, at pressures of 0.1, 10, 20, and 30MPa respectively. A gate delay of 0.4 μs and a gate width of 0.5 μs are used for all measurements. Each signal represents the average of 10
measurements performed at each condition.
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770 nm 2P1/2 → 2S1/2 can be seen in Fig. 6(c) and (d). The variation in
peak intensity and FWHM with pressure between 0.1 and 30 MPa for
Ca I at 423 nm 1P1 → 1S0 and K I at 766 nm 2P3/2 → 2S1/2 is shown in
Fig. 7(a) and (b), respectively. The peak intensity after subtraction of
the background is shown, and the error bars represent the standard de-
viation of 10 typical measurements under each condition, where all
measurements are made using a single shot. The data in red is for the
150 ns pulse, and the data in black is for the 20 ns pulse. It can be
seen that there is no significant effect of pressure on the intensity of
the signal for both the 20 ns pulse, as reported previously [6], and the
150 ns pulse. The average intensity of the peak obtained using a
150 ns pulse is lager than that obtained using a 20 ns pulse by a factor
of 2.2× and 1.6× for Ca I at 423 nm and K I at 766 nm, respectively.
For Ca I at 423 nm, the FWHM shows some change with pressure, in-
creasing from 0.88 to 1.08 nm for the 20 ns pulse and from 0.84 to
0.89 nm for the 150 ns pulse between pressures of 0.1 and 30 MPa.
The FWHM of K I at 766 nm is generally broader than Ca I at 423 nm,
and increases slightly with pressure from 1.36 to 1.69 nm for the
20 ns pulse, and 1.19 to 1.39 nm for the 150 ns pulse, between pressures
of 0.1 and 30 MPa. Broadening of the peaks can also be seen in the de-
tailed views shown in Fig. 6(b) and (d). In all cases, the FWHM is
narrower for the 150 ns pulse. The slight increase in FWHM is attributed
to the fact that, although the effects of pressure are small, there is a
slight decrease in the volume of the plumes generated at higher pres-
sure during the period of optical emission, which leads to a higher den-
sity ofmaterial in the plume. The FWHM for the signals obtained using a
long pulse are less sensitive to external pressure, where for Ca I at
423 nm the FWHM is 0.95× and 0.82× that observed using a short
pulse at 0.1 and 30 MPa, respectively. For K I at 766 nm the relative ra-
tios are 0.87× and 0.82× at 0.1 and 30MPa respectively. For both pulse
durations however, the observed pressure broadening effects are of the
same order as the measurement error bars, and do not significantly in-
fluence the analytical value of the emission lines seen.

4. Discussion

This study has demonstrated that long ns duration laser-induced
breakdown spectroscopy is available as a technique to perform spectro-
scopic analysis of bulk ionic solutionswith enhanced spectral character-
istics compared to conventional short ns duration measurements for
hydrostatic pressures of up to 30MPa. The enhancement in the intensity
of the spectral lines for a 150 ns pulse is in the order of 1.6× to 2.2×
those measured using a 20 ns pulse for the peaks analyzed in this
work. The long pulse also has narrower peaks, with the FHWM in the
order of 0.82× to 0.95× of those measured using the shorter duration
pulse, and while the FWHM increases slightly with external pressure,
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the long pulse is less sensitive for external pressures up to 30 MPa. The
enhancement in the intensity of the spectrum is attributed tomore effi-
cient coupling of the laser pulse energy into mechanical effects for the
150 ns long pulse, which results inmore intense optical emissions com-
pared to a 20 ns duration pulse of the same energy. The results indicate
that long-pulse irradiation can improve the quality of spectra observed
from bulk ionic solutions at pressures of up to 30MPa compared to con-
ventional ns duration pulses, and can be used to investigate chemical
processes in fluids at supercritical pressures, and perform in situ ele-
mental analysis of fluids in the deep-sea environment.
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