133 research outputs found

    A single sub-km Kuiper Belt object from a stellar Occultation in archival data

    Get PDF
    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects (KBOs). Small, sub-km sized, KBOs elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied KBO abundances are inconsistent with each other and far exceed theoretical expectations. Here, we report an analysis of archival data that reveals an occultation by a body with a 500 m radius at a distance of 45 AU. The probability of this event to occur due to random statistical fluctuations within our data set is about 2%. Our survey yields a surface density of KBOs with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The fact that we detected only one event, firmly shows a deficit of sub-km sized KBOs compared to a population extrapolated from objects with r>50 km. This implies that sub-km sized KBOs are undergoing collisional erosion, just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until 1800 hours London time on 16 December. 19 pages; 7 figure

    The MACHO Project Large Magellanic Cloud Variable Star Inventory. VIII. The Recent Star Formation History of the LMC from the Cepheid Period Distribution

    Get PDF
    We present an analysis of the period distribution of 1800\sim 1800 Cepheids in the Large Magellanic Cloud, based on data obtained by the MACHO microlensing experiment and on a previous catalogue by Payne-Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared to the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC (1.15×108\sim 1.15\times 10^8 years). We also show that during the last 108\sim 10^8 years, the main center of star formation has been propagating from SE to NW along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by 7\sim 7 % and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are 600\sim 600 Cepheids with periods below 2.5\sim 2.5 days cannot be explained by evolution theory. We suggest that they are anomalous Cepheids; a number of these stars are double-mode Cepheids

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003

    The Function of Anal Fin Egg-Spots in the Cichlid Fish Astatotilapia burtoni

    Get PDF
    Color and pigmentation patterns of animals are often targets of sexual selection because of their role in communication. Although conspicuous male traits are typically implicated with intersexual selection, there are examples where sex-specific displays play a role in an intrasexual context, e.g. when they serve as signals for aggression level and/or status. Here, we focus on the function of a conspicuous male ornament in the most species-rich tribe of cichlid fishes, the haplochromines. A characteristic feature of these ca. 1500 species are so-called egg-spots in form of ovoid markings on the anal fins of males, which are made up of carotenoid based pigment cells. It has long been assumed that these yellow, orange or reddish egg-spots play an important role in the courtship and spawning behavior of these maternal mouth-brooding fishes by mimicking the eggs of a conspecific female. The exact function of egg-spots remains unknown, however, and there are several hypotheses about their mode of action. To uncover the function of this cichlid-specific male ornament, we used female mate choice experiments and a male aggression test in the haplochromine species Astatotilapia burtoni. We manipulated the number and arrangement of egg-spots on the anal fins of males, or removed them entirely, and tested (1) female preference with visual contact only using egg-traps, (2) female preference with free contact using paternity testing with microsatellites and (3) male aggression. We found that females did not prefer males with many egg-spots over males with fewer egg-spots and that females tended to prefer males without egg-spots over males with egg-spots. Importantly, males without egg-spots sired clutches with the same fertilization rate as males with egg-spots. In male aggression trials, however, males with fewer egg-spots received significantly more attacks, suggesting that egg-spots are an important signal in intrasexual communication

    Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    Get PDF
    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy

    The Past and Future of Evolutionary Economics : Some Reflections Based on New Bibliometric Evidence

    Get PDF
    This document is the Accepted Manuscript version of the following article: Geoffrey M. Hodgson, and Juha-Antti Lamberg, ‘The past and future of evolutionary economics: some reflections based on new bibliometric evidence’, Evolutionary and Institutional Economics Review, first online 20 June 2016. The final publication is available at Springer via doi: http://dx.doi.org/10.1007/s40844-016-0044-3 © Japan Association for Evolutionary Economics 2016The modern wave of ‘evolutionary economics’ was launched with the classic study by Richard Nelson and Sidney Winter (1982). This paper reports a broad bibliometric analysis of ‘evolutionary’ research in the disciplines of management, business, economics, and sociology over 25 years from 1986 to 2010. It confirms that Nelson and Winter (1982) is an enduring nodal reference point for this broad field. The bibliometric evidence suggests that ‘evolutionary economics’ has benefitted from the rise of business schools and other interdisciplinary institutions, which have provided a home for evolutionary terminology, but it has failed to nurture a strong unifying core narrative or theory, which in turn could provide superior answers to important questions. This bibliometric evidence also shows that no strong cluster of general theoretical research immediately around Nelson and Winter (1982) has subsequently emerged. It identifies developmental problems in a partly successful but fragmented field. Future research in ‘evolutionary economics’ needs a more integrated research community with shared conceptual narratives and common research questions, to promote conversation and synergy between diverse clusters of research.Peer reviewedFinal Accepted Versio

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A and Pv-

    Systems microscopy approaches to understand cancer cell migration and metastasis

    Get PDF
    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration
    corecore