3,276 research outputs found

    Geometric Prequantization of the Moduli Space of the Vortex equations on a Riemann surface

    Full text link
    The moduli space of solutions to the vortex equations on a Riemann surface are well known to have a symplectic (in fact K\"{a}hler) structure. We show this symplectic structure explictly and proceed to show a family of symplectic (in fact, K\"{a}hler) structures ΩΨ0\Omega_{\Psi_0} on the moduli space, parametrised by Ψ0\Psi_0, a section of a line bundle on the Riemann surface. Next we show that corresponding to these there is a family of prequantum line bundles PΨ0{\mathcal P}_{\Psi_0} on the moduli space whose curvature is proportional to the symplectic forms ΩΨ0\Omega_{\Psi_0}.Comment: 8 page

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex

    Adaptation and enslavement in endosymbiont-host associations

    Full text link
    The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating - a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread, and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted in Phys. Rev. E; New figure adde

    Stochasticity and evolutionary stability

    Full text link
    In stochastic dynamical systems, different concepts of stability can be obtained in different limits. A particularly interesting example is evolutionary game theory, which is traditionally based on infinite populations, where strict Nash equilibria correspond to stable fixed points that are always evolutionarily stable. However, in finite populations stochastic effects can drive the system away from strict Nash equilibria, which gives rise to a new concept for evolutionary stability. The conventional and the new stability concepts may apparently contradict each other leading to conflicting predictions in large yet finite populations. We show that the two concepts can be derived from the frequency dependent Moran process in different limits. Our results help to determine the appropriate stability concept in large finite populations. The general validity of our findings is demonstrated showing that the same results are valid employing vastly different co-evolutionary processes

    Nongaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process

    Full text link
    The appropriate description of fluctuations within the framework of evolutionary game theory is a fundamental unsolved problem in the case of finite populations. The Moran process recently introduced into this context [Nowak et al., Nature (London) 428, 646 (2004)] defines a promising standard model of evolutionary game theory in finite populations for which analytical results are accessible. In this paper, we derive the stationary distribution of the Moran process population dynamics for arbitrary 2×22\times{}2 games for the finite size case. We show that a nonvanishing background fitness can be transformed to the vanishing case by rescaling the payoff matrix. In contrast to the common approach to mimic finite-size fluctuations by Gaussian distributed noise, the finite size fluctuations can deviate significantly from a Gaussian distribution.Comment: 4 pages (2 figs). Published in Physical Review E (Rapid Communications

    Robustness of Cooperation in the Evolutionary Prisoner's Dilemma on Complex Networks

    Full text link
    Recent studies on the evolutionary dynamics of the Prisoner's Dilemma game in scale-free networks have demonstrated that the heterogeneity of the network interconnections enhances the evolutionary success of cooperation. In this paper we address the issue of how the characterization of the asymptotic states of the evolutionary dynamics depends on the initial concentration of cooperators. We find that the measure and the connectedness properties of the set of nodes where cooperation reaches fixation is largely independent of initial conditions, in contrast with the behavior of both the set of nodes where defection is fixed, and the fluctuating nodes. We also check for the robustness of these results when varying the degree heterogeneity along a one-parametric family of networks interpolating between the class of Erdos-Renyi graphs and the Barabasi-Albert networks.Comment: 18 pages, 6 figures, revised version accepted for publication in New Journal of Physics (2007

    Phase transitions in social sciences: two-populations mean field theory

    Get PDF
    A new mean field statistical mechanics model of two interacting groups of spins is introduced and the phase transition studied in terms of their relative size. A jump of the average magnetization is found for large values of the mutual interaction when the relative percentage of the two populations crosses a critical threshold. It is shown how the critical percentage depends on internal interactions and on the initial magnetizations. The model is interpreted as a prototype of resident-immigrant cultural interaction and conclusions from the social sciences perspectives are drawn

    Chaos and unpredictability in evolutionary dynamics in discrete time

    Get PDF
    A discrete-time version of the replicator equation for two-strategy games is studied. The stationary properties differ from that of continuous time for sufficiently large values of the parameters, where periodic and chaotic behavior replace the usual fixed-point population solutions. We observe the familiar period-doubling and chaotic-band-splitting attractor cascades of unimodal maps but in some cases more elaborate variations appear due to bimodality. Also unphysical stationary solutions have unusual physical implications, such as uncertainty of final population caused by sensitivity to initial conditions and fractality of attractor preimage manifolds.Comment: 4 pages, 4 figure

    Competitive market for multiple firms and economic crisis

    Full text link
    The origin of economic crises is a key problem for economics. We present a model of long-run competitive markets to show that the multiplicity of behaviors in an economic system, over a long time scale, emerge as statistical regularities (perfectly competitive markets obey Bose-Einstein statistics and purely monopolistic-competitive markets obey Boltzmann statistics) and that how interaction among firms influences the evolutionary of competitive markets. It has been widely accepted that perfect competition is most efficient. Our study shows that the perfectly competitive system, as an extreme case of competitive markets, is most efficient but not stable, and gives rise to economic crises as society reaches full employment. In the economic crisis revealed by our model, many firms condense (collapse) into the lowest supply level (zero supply, namely bankruptcy status), in analogy to Bose-Einstein condensation. This curious phenomenon arises because perfect competition (homogeneous competitions) equals symmetric (indistinguishable) investment direction, a fact abhorred by nature. Therefore, we urge the promotion of monopolistic competition (heterogeneous competitions) rather than perfect competition. To provide early warning of economic crises, we introduce a resolving index of investment, which approaches zero in the run-up to an economic crisis. On the other hand, our model discloses, as a profound conclusion, that the technological level for a long-run social or economic system is proportional to the freedom (disorder) of this system; in other words, technology equals the entropy of system. As an application of this new concept, we give a possible answer to the Needham question: "Why was it that despite the immense achievements of traditional China it had been in Europe and not in China that the scientific and industrial revolutions occurred?"Comment: 17 pages; 3 figure

    Hawks and Doves on Small-World Networks

    Get PDF
    We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random graphs with small-world networks in between. This is done by means of computer simulations using several update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The differences are due to different update rules and depend on the gain-to-cost ratio. We analyse and qualitatively explain this behavior by using local topological arguments.Comment: 12 pages, 8 figure
    corecore